
5 Pitfalls to Avoid When Building Advanced
Voice AI Systems

Understanding the voice AI landscape in 2025

Voice AI has now evolved from an experimental prototype to a crucial tool for enterprise
automation. With massive advances in large language models (LLMs), text-to-speech (TTS),
and speech-to-text (STT), there is an assumption that building voice AI is simply a matter of
connecting these components with telephony infrastructure.

However, real-world implementation reveals a more complicated reality. It might sound like any
other development project, but when you try to stitch these components together, things start
falling apart. Each individual component introduces complex state dependencies, latency
constraints, and scaling inefficiencies when deployed in production.

That’s why, when it comes to real-time, scalable, enterprise-grade AI voice, the industry is stuck.
Companies see the promise but get trapped in a cycle of prototypes, integrations, and rework,
never quite achieving the seamless, intelligent, natural AI communication they envisioned.

The promise of AI agents crashes against the limitations of fragmented systems. To build truly
effective AI-powered contact centers requires overcoming the limitations of fragmented
architectures and designing a tightly integrated solution.

First, understand the hidden obstacles that prevent successful deployment. AI voice systems
should not be a Frankenstein project of LLMs, TTS, STT, and legacy telecom platforms. If your
goal is to implement AI-powered voice, chat, and video that truly works and scales, here are the
five biggest roadblocks standing in your way (and how to avoid them before they stall your
progress).

Pitfall #1: The "it seems simple" trap

Creating a voice AI system appears straightforward: combine language models for
conversation, speech recognition for input, voice synthesis for output, and telephony for delivery.

Many development teams start with this modular approach, assuming they can simply connect
these components through APIs: just plug in LLMs, STT, and TTS. But every additional
integration introduces delays, state management complexities, and points of failure, especially
at scale.

When you attempt to stitch together separate systems, each component introduces additional
network latency, new points of potential failure, complex state management challenges, and
synchronization problems at scale. A conversation that requires data to travel between multiple
separate systems inevitably suffers from delays and disruptions that break the natural flow of
human-like conversation.

Solution: The integrated approach

Rather than treating voice AI as a collection of separate APIs, successful implementations
require an integrated system architecture. AI capabilities should be integrated directly into the
media stack, creating a pipeline for voice processing.

This approach will minimize unnecessary network hops to reduce overall system latency, create
more resilient connections, and overall, maintain conversation continuity. By processing voice,
language understanding, and response generation within a unified framework, the AI voice
system can achieve the sub-500ms latency necessary for conversations that feel natural.

Pitfall #2: The proof of concept wall

You may have been able to successfully create impressive voice AI demos that work perfectly in
controlled environments, with demo videos that always look smooth… when you edit out the lag.
However, when these systems move into production with real users and unpredictable
conditions, they quickly deteriorate.

http://ai.signalwire.com

In real-world deployments, however, latency can spike during high call volumes, WebSockets
could drop and hang up on callers, AI can lose context when network issues occur, and AI might
face an inability to handle unexpected user interruptions.

The controlled environment of a demo rarely reflects the chaotic conditions of real-world
deployment, leading to overall performance degradation at scale and disappointing results when
voice AI meets actual users.

Solution: Build for real-world resilience

To overcome the proof-of-concept wall, voice AI systems must be designed with production
realities in mind from the beginning. That means AI, speech processing, and telephony should
already be integrated into a single real-time execution pipeline, enabling bidirectional streaming
and proactive state persistence across network fluctuations. Real-time error recovery
mechanisms should gracefully handle packet loss and allow the call state at the telephony level
to preserve context even during network disruptions.

Systems should also gracefully handle interruptions, conversation transitions and unexpected
user behavior by continuing the conversation with the user while, for example, pulling CRM data
in the background.

Finally, test under variable network conditions and high load scenarios, focusing on resilience
and real-world performance from the start.

Pitfall #3: The multi-channel integration labyrinth

The modern customer expects consistent experiences across all communication channels.
Many organizations start with a single channel (often text-based chat) and later attempt to
expand to voice, only to discover that their existing architecture doesn't translate well to
real-time audio interactions.

In 2025, your AI system needs to work across voice, video, and messaging. But many AI
solutions struggle to expand beyond their original channel, leading to clunky, disjointed
experiences. Platforms without built-in telephony, video conferencing, and two-way text
messaging may struggle to deliver the desired outcome.

You might find that:

● Voice requires lower latency than text-based interactions
● Different AI models optimized for different channels create inconsistent experiences
● State management becomes exponentially more complex across channels
● Development teams struggle with different technical requirements for each channel
● Customer journeys break when moving between channels

When voice AI is treated as an afterthought to existing systems, the result is typically a
disjointed experience that fails to meet customer expectations. That struggle will extend to video
and messaging, too, if they’re not prioritized.

Solution: Channel-agnostic AI architecture

Rather than building separate AI systems for each channel, implement a unified AI engine that
processes all inputs through the same cognitive framework, regardless of source. This avoids
fragmentation and curates an omni-channel experience that creates consistent AI behavior
across voice, chat, and video, all while maintaining context when users switch between
channels.

Without an integrated approach, adding new communication channels leads to exponentially
growing complexity. By leveraging AI that treats all communication channels as variations of the
same fundamental interaction model, a seamless experience will follow customers across their
preferred touchpoints.

Pitfall #4: The tool use conundrum

Basic voice AI that simply answers questions from a predefined knowledge base offers limited
business value. Real impact comes when AI can interact with systems like CRMs, support
ticketing platforms, payment gateways, and inventory management tools.

However, each additional integration introduces new complexity:

● Multiple API calls increase overall latency (again)
● Additional services create new points of failure
● Webhook servers must scale independently
● Security boundaries between systems complicate data access
● Each tool requires specific error handling and fallback strategies

As voice AI connects to more backend systems, the architecture can become a fragile web of
dependencies that's difficult to maintain and troubleshoot.

Solution: Native tool integration framework

A simple voicebot that answers preset FAQs is one thing. But when you need AI to interact with
other systems, the complexity skyrockets quickly.

Instead of treating external tools as separate systems requiring complex integration, implement
advanced voice AI that supports tool use as a native capability within the AI conversation
framework, which allows AI to access business data without excessive API calls, maintains
conversation flow during tool interactions, simplifies security and access control, enables
real-time, context-aware tool utilization.

Integrated tool use directly in the voice AI platform means that AI agents can incorporate
business processes and customer data into natural conversations. For true scalability, the AI,
speech processing, telephony, and tool use must function within the same pipeline.

Pitfall #5: The compliance riddle

Across industries, voice AI systems need to be able to handle sensitive information including
personally identifiable information (PII), payment details, and confidential data. Standard LLMs
weren't designed with these security requirements in mind, creating significant compliance
concerns that prohibit the adoption of more advanced AI.

Considerations include:

● LLMs may inadvertently store sensitive information in their context window
● Payment processing often requires PCI DSS compliance
● Healthcare applications must maintain HIPAA compliance
● Different regions have varying data protection requirements
● Data leakage through insecure API transmissions.

Compliance must be prioritized, or organizations will have to choose between security and
usability.

Solution: Security-first architecture

To launch enterprise-grade voicebots, you will likely need to collect sensitive information on live
calls. How do you accomplish this without exposing sensitive data to public cloud LLMs?

Advanced voice AI implementations can address compliance requirements through architectural
design rather than bolt-on security measures, and should separate sensitive data processing
from AI interaction. Effective approaches include:

● Dual-channel audio routing that processes sensitive data separately from AI
conversation

● Selective context management that excludes sensitive information from LLM inputs
● Purpose-built compliance modes for specific regulatory frameworks
● Secure processing zones for sensitive operations
● Real-time redaction of sensitive information from transcripts and logs

By choosing tools to build voice AI that are already integrated tightly with compliance from the
ground up, systems supported by AI can maintain both security and conversational fluidity, no
matter the industry.

Building future-proof voice AI

The path to effective voice AI isn't found in choosing the right LLM or voice technology in
isolation. Success comes from a holistic approach that addresses these five pitfalls through
integrated system design.

The future of voice AI belongs to unified systems that prioritize integration, performance, and
resilience over modular flexibility. By avoiding these common pitfalls and embracing a more
cohesive approach, you can be at the forefront of unlocking the full potential of voice AI to
actually transform customer interactions.

The future of voice AI is all about real-time, scalable, and secure conversational experiences.
As you search for your holy grail AI system, remember that:

● Voice AI requires tight integration between speech processing, language understanding,
and telephony.

● Real-world testing matters. Systems that work in demos often fail under production
conditions.

● Customers expect consistent experiences across voice, chat, and video.
● Effective voice AI must interact seamlessly with backend systems and existing tools.
● Compliance should be built into the system design, not added hastily as an afterthought.

By addressing these issues upfront, you can have your AI communication system functioning in
the next few months. Don't just impress in demos – deliver the transformative customer
experience in real-world deployments that we’ve all been talking about.

http://ai.signalwire.com

AI Inside the Stack: Why SignalWire’s
Embedded Approach Is the Future of
Real-Time Communication

How SignalWire Redefined Voice AI by Making It Native,
Composable, and Instantly Deployable

1. Executive Summary

The transformation brought by generative AI has swept across industries, but nowhere is the
need for rearchitecture more urgent than in telecommunications. While advances in LLMs have
made intelligent interfaces common in consumer apps, real-time infrastructure powering voice
and video remains constrained by designs built for an earlier era., but nowhere is the gap
between promise and reality more visible than in telecommunications. While large language
models (LLMs) and voice assistants have made significant advances in consumer-facing
interfaces, the backend infrastructure powering real-time voice interactions has lagged behind.
Most platforms are still relying on brittle integrations, clunky middleware, and legacy signaling
paths that were never designed to support the dynamic nature of AI-driven workflows.

This leads to a host of systemic issues: inconsistent latency, dropped context, poor speech
recognition, and AI agents that can’t meaningfully complete tasks or escalate intelligently.
Meanwhile, developers are burdened with stitching together cloud APIs, provisioning compute
for inference, managing state manually, and compensating for jitter and lag at every layer.

SignalWire offers a radically different approach. By embedding AI directly into the media and
signaling fabric itself, rather than layering it on top, SignalWire has created a system where
intelligence is native to the communication process, not an afterthought.

This architectural shift means developers can now create and deploy real-time, programmable
AI agents in minutes, not weeks. The result: faster, smarter, lower-latency voice experiences
that scale natively across SIP, WebRTC, PSTN, and more. In this whitepaper, we break down
the core elements of SignalWire’s embedded AI model, why it works, and why it’s the inevitable
future of communications.

2. The Problem: Legacy Models Can’t Keep Up

AI has been retrofitted into legacy telecom stacks using brittle methods: streaming audio
through WebSockets to cloud-hosted LLMs, manually bridging STT, NLU, and TTS components,
and building context switching on the fly. This approach not only introduces delays of up to
several seconds per turn, but also fractures the user experience, as handoffs between systems
become unreliable and context is frequently lost.

Developers tasked with building these solutions often find themselves writing glue code just to
make basic functionality work. They must manage session state across services, handle retries
and failure recovery, and monitor latency across several different APIs, all before even
beginning to apply RISEN-style prompting or define structured task prompting using POM
(Prompt Oriented Model).

Meanwhile, enterprise teams struggle with scalability. Each AI interaction requires costly
compute, and the architecture can’t reliably adapt to spikes in traffic or changes in behavior.
Latency becomes inconsistent. Speech recognition breaks under jitter. Callers experience long
pauses and awkward transitions. And because most systems rely on a cloud AI provider,
privacy, cost, and compliance become even harder to manage.

CPaaS providers advertise "programmable AI" experiences, but what they deliver is
fundamentally reactive: calls must leave the platform to perform reasoning, and developers are
forced to operate like systems integrators instead of solution builders. What customers want,
conversational, responsive, task-completing agents, remains out of reach for all but the most
heavily engineered systems.

3. SignalWire’s AI Kernel

SignalWire took the hard path first: embedding AI into the same runtime that processes calls. Its
AI Kernel runs inside the same infrastructure layer as the media and signaling engine,
eliminating the need to offload audio to remote services and reducing the cognitive load for
developers. Unlike traditional cloud integrations, where AI lives at the edge of the call and must
be fed audio via proxy, SignalWire's model allows agents to live in-line with the conversation.

SignalWire’s embedded execution model works with wide, general-purpose models that are
dynamically focused using RISEN-style prompting techniques and innovations like POM
(Prompt Oriented Model). This design gives SignalWire the ability to:

● Transcribe and analyze speech with sub-500ms round trip latency, ensuring lifelike
conversations

● Execute language model logic directly within the session, without leaving the fabric
● Enforce guardrails, memory policies, and role constraints locally, without exposing raw

user data to third-party services
● Scale agents like infrastructure, not like brittle apps that must be provisioned, patched,

and monitored manually

This embedded approach solves what most platforms treat as technical debt: variable latency,
fragmented control flows, and inconsistent AI state. With embedded execution, every action the
AI takes is synchronized with the telephony state, meaning it can influence call routing, media
playback, DTMF collection, or even recordkeeping in real time.

With Call Fabric, SignalWire enables AI Agents, Rooms, Subscribers, and APIs to behave like
addressable endpoints in a real-time network. Logic and orchestration are described in SWML,
a declarative language that empowers developers to define interactions without procedural
code, eliminating the need for redundant backend infrastructure.

4. From Prompt to Production in One File

Building a full-featured AI agent in SignalWire requires one SWML file. This file encapsulates
everything needed to define the agent’s personality, capabilities, and behavior within a live call.
A single ai: block can set the role (e.g., receptionist, technical support, concierge), define tone
and conversational style, configure memory retention policies, and assign tools to take
real-world actions.

Developers can add a post_prompt_url to trigger a webhook after the call ends, allowing for
automatic CRM updates, ticket creation, or even sentiment analysis. Tools can be embedded
using the swaig syntax to access internal systems and external APIs, perform lookups, or
securely collect payment information. All of this logic lives in the same file, tightly coupled with
the media layer.

Once defined, the agent can be bound to any channel: PSTN via phone number, SIP via
subscriber, or a Room for multiparty video. SignalWire’s Call Fabric handles routing and
execution instantly, with no need to deploy cloud infrastructure, spin up VMs, or write
microservices to connect the pieces.

The result is an entirely serverless deployment flow. Just publish the file and the agent is live,
ready to take calls, escalate to humans, access APIs, and summarize conversations in real
time.

SignalWire’s Voice AI interface is powered by innovations like POM, Prompt Object Model, a
strategy for driving agent behavior through a simpler document object schema, rather than
model tuning or training. With POM, developers define how the AI should behave using
structured domain-specific prompts that structure tasks in a predictable, reusable way. This
removes the need for fine-tuning, ensures model generality, and increases transparency and
safety. POM enables RISEN-style prompting that adapts wide models to narrow use cases by
orchestrating prompts around role, intent, state, execution, and next steps.

5. Developer Velocity: From Months to Weeks

SignalWire's approach collapses development time dramatically by transforming what
traditionally takes months of API integrations, infrastructure provisioning, and multi-vendor
coordination into streamlined, declarative development that can be completed in days or weeks.
By embedding AI directly into the real-time communication layer, SignalWire eliminates the need
for developers to manage speech pipelines, orchestrators, or voice SDKs. The stack is unified
from day one.

Teams that once needed months to plan and build voice applications with AI, factoring in
separate components for STT, TTS, LLMs, logic, telephony, routing, escalation, and post-call
workflows, can now ship prototypes in days and production-grade systems in under two weeks.

Certain milestones that used to be complex and take months and years are now reduced to
days and weeks

● Create and test an AI intake bot with call routing
● Add real-time API logic (e.g., check open tickets)
● Run a full conversation and test the application.

Because everything is declarative, developers focus on what should happen rather than how to
plumb it together. SignalWire abstracts the real-time stack through Call Fabric and SWML,
enabling a development experience that feels more like working with modern web frameworks
than legacy telecom systems.

This shift reduces operational overhead, accelerates product delivery, and gives both startups
and enterprises a repeatable model for deploying advanced voice AI without the friction of
traditional CPaaS or cloud-native telephony stacks.

6. Why Everyone Else Is Behind

Each of these solutions suffers from the same core limitations: they treat AI as something to
integrate rather than something to embed. Twilio and Vonage offer AI features via cloud
connectors or middleware, which means every conversational turn introduces latency and
potential failure points. PolyAI and Dialogflow-style systems rely on static intent models and are
best suited for narrow, pre-scripted use cases, not fluid, cross-domain dialogue or action-taking.

LiveKit and Daily provide excellent media pipelines, but leave it up to the developer to build
everything else, including agent state, orchestration logic, and system integrations. These
infrastructure-only stacks may be performant, but they offer no built-in path to intelligent
automation.

Meanwhile, proposals like MCP (Modular Communications Protocol) envision a future of
standardized interfaces between AI and telecom, but they lack execution. SignalWire has
already shipped what these designs hope to become: a composable, programmable, real-time
environment where AI lives inside the fabric, scales on demand, and acts with context.

This is not just a matter of feature parity. It’s a philosophical difference. SignalWire enables
builders to create meaningful, production-grade AI voice experiences without needing to cobble
together a dozen services. That’s why developers are switching, and why the next wave of AI in
telecom won’t be glued together. It will be composed.

SignalWire is already running real-time agents in production globally, across SIP, PSTN, mobile,
and video, without middleware, plugins, or heavy DevOps. Its composability and embedded
performance are unmatched.

7. The Strategic Future of AI in Telecom

In a world where AI agents replace forms, menus, and scripted logic, execution matters more
than model selection. While large language models continue to improve in accuracy and
breadth, they will become increasingly commoditized. The true differentiator will be where and
how those models are executed, and whether they can operate with continuity across channels,
use cases, and sessions.

SignalWire recognizes that intelligence must live not on the edge of the network, but in its core.
By embedding AI directly into the media stack, it makes the agent a first-class system
component, one capable of reasoning, taking action, and controlling flow in real time. These
agents don’t just respond to queries; they drive the conversation, manage escalations, and
perform backend logic with secure, verifiable outcomes.

SignalWire’s model introduces a new era where call flows are no longer hard-coded or
stateless, they’re intelligent, dynamic, and conversational. With shared memory and secure
context preservation, AI agents can pick up where they left off across calls, or operate in parallel
across voice and chat. The result is a fluid, intelligent user experience that feels far more like a
human assistant than a phone tree.

This shift redefines what telecom is for: no longer just a conduit for sound, but a programmable,
intelligent medium for service, support, and automation. The platforms that embrace this shift
will be the ones that define the next generation of customer experience. SignalWire is already
there.

This isn’t about plugging AI into telecom. It’s about transforming telecom into an AI-native
execution environment, one where intelligence and media operate as a unified system.

8. Conclusion: The Stack is the Strategy

SignalWire is not just a communications platform, it’s the foundation for a new generation of
AI-native systems. If you're ready to deploy intelligent agents that act in real time, scale
instantly, and integrate seamlessly into your communications fabric, SignalWire offers
everything you need.

Start building today at signalwire.com, or explore the developer docs to launch your first AI
agent with SWML in just minutes.

SignalWire didn’t just add AI to voice infrastructure. It rebuilt the voice stack to support AI
natively, with developer experience, security, and performance at its core. That’s why
developers can launch useful, intelligent voice agents in minutes, and why enterprises are
choosing SignalWire to scale their communications infrastructure with confidence. The next
generation of communication isn’t stitched together. It’s composed. And it’s already running, on
SignalWire.

Appendices

A. SWML Agent Example with SWAIG Tools
B. Benchmark: Round-Trip Latency vs Competitors
C. Developer Onboarding Flow
D. Glossary of AI Integration Terms (SWML, SWAIG, Post-Prompt, etc.)

https://signalwire.com

Why is it a bad idea to create your own custom LLM or other GenAI model?

Building a custom LLM or GenAI model from scratch is a costly and complex endeavor. It
requires vast amounts of data, computational power, and expertise in machine learning and
NLP. Additionally, maintaining and fine-tuning such a model is an ongoing effort that demands
specialized talent. Even large tech companies struggle with the high costs and time investment
involved. Instead of reinventing the wheel, businesses can leverage existing models integrated
with platforms like SignalWire, which offer lower latency, high efficiency, and seamless telecom
integration.

How does SignalWire AI help developers get around these problems?

SignalWire AI is not just a pre-built solution but a complete IVR framework with an embedded AI
kernel. This allows developers to define any AI interaction as prompts and webhooks, making it
far more flexible and powerful than other market offerings. Instead of requiring developers to
train and maintain AI models, SignalWire provides a framework for fully programmable AI-driven
communication. With SWML (SignalWire Markup Language), developers can create dynamic,
interactive call flows that leverage AI for real-time speech processing, decision-making, and
seamless API integration. This eliminates the need to build AI-driven telecom solutions from
scratch while maintaining full control and customization.

Why is it hard to add AI to phone calls and telecom systems?

AI-powered voice interactions require ultra-low latency to maintain natural conversation flow.
Traditional telecom systems introduce delays due to signal routing, audio processing, and
external API integrations. Most other AI telecom solutions rely on multiple third-party providers,
each adding processing overhead. Media is often transported across internet sockets in heavy
formats, further exacerbating latency issues. On top of this, PSTN and mobile phone networks
introduce inherent latency beyond anyone’s control. Each additional processing hop, whether for
transcription, AI inference, or call routing, adds delay, forcing competitors to pull media away
from the media stack only to return it with significant latency. SignalWire eliminates these
inefficiencies by embedding AI directly within its telecom infrastructure, keeping media
processing local and reducing round-trip delays to ~500ms.

Why is AI being integrated into the telecom stack a big deal? What problems do telecom
networks create that make AI struggle?

Integrating AI into the telecom stack eliminates common issues like high latency, signal
degradation, and difficulty in synchronizing real-time speech analysis. Traditional telecom
networks were not designed for AI-driven interactions, leading to inefficiencies when integrating
AI post-facto. SignalWire’s native AI integration solves these problems by handling voice, video,
and messaging directly within the same infrastructure, optimizing for real-time performance.

Unlike other solutions that require media to be offloaded to external processing centers,
introducing significant round-trip delays, SignalWire’s AI kernel is embedded directly in the

media stack. This allows input handling, AI processing, and LLM access to work in unison,
ensuring that media never has to leave the system. By eliminating these extra hops, SignalWire
significantly reduces latency, preventing the unnatural pauses and lag that typically plague
AI-powered voice interactions. The result is a seamless, real-time conversation experience that
feels natural and responsive.

Why is it such a big deal that SignalWire AI works across PSTN, WebRTC, SIP? How does
SignalWire’s AI adjust to different types of calls without breaking?

Telecom networks use different protocols, each with unique constraints. PSTN calls have
inherent latency, SIP calls involve complex routing, and WebRTC is optimized for real-time
interactions. SignalWire AI seamlessly adapts to each of these environments by operating
directly within the SignalWire media stack, ensuring consistent performance across all
communication types.

Beyond just AI, the SignalWire platform allows businesses to build rich media applications once
and deploy them across PSTN, WebRTC, and SIP without needing to implement different
versions for each protocol. This is essential for UCaaS, CCaaS, and AI applications, as it
enables customers and agents to access the same features across all networks seamlessly. By
eliminating the need for multiple implementations and expensive adapters in the middle of the
call flow, SignalWire reduces both infrastructure costs and latency, ensuring a smoother, faster,
and more efficient communication experience.

Why would someone use SignalWire AI over other competitors like Bland, Sierra, or even
Twilio? How is SignalWire’s AI built differently from others?

SignalWire AI is designed from the ground up for ultra-low latency, real-time telecom
applications. Unlike competitors that rely on third-party CPaaS for media handling, SignalWire
integrates AI directly into the media stack, eliminating unnecessary processing layers. This
results in faster response times, better scalability, and a more seamless AI-driven conversation
experience.

SignalWire is built on the foundation of FreeSWITCH, which has been a leader in scalable
telecom infrastructure for years. On top of this foundation, SignalWire has added enhanced
media capabilities, allowing for immediate scalability instead of the challenges that new
companies face when trying to scale on third-party CPaaS providers. This reliance on CPaaS by
other competitors not only increases their latency, as previously discussed, but also limits their
ability to provide the deep media integrations that SignalWire offers.

Additionally, SignalWire AI delivers the fastest response times in its class for voice AI, ensuring
a near-instant interaction experience. Its framework is also the most robust for building AI tools
that can control middleware, execute native media stack operations like call transfers and digit
dialing, and securely perform PCI-compliant number collections. With these capabilities,
SignalWire is not just another AI telecom provider, it is a fully programmable and scalable
AI-driven communications platform.

How would you describe SignalWire’s AI security measures? What encryption standards
or compliance measures are in place?

SignalWire AI adheres to strict security protocols, including end-to-end encryption and metadata
tokenization. Compliance measures include GDPR, HIPAA, PCI, and SOC 2 Type 2
certifications, ensuring that sensitive customer data remains secure. Access controls and
logging features help businesses maintain compliance with enterprise security requirements.

A unique security feature of SignalWire AI is its ability to invoke media stack functions to
transition into a secure IVR within an AI conversation. This means that during sensitive
interactions, such as collecting payment information or personal identification, the AI can
seamlessly hand off to a secure IVR flow where critical data is collected without ever being
exposed to the AI or the broader system. This ensures that sensitive information remains
protected and prevents unnecessary AI exposure to private user data, maintaining strict
compliance with security regulations while providing a seamless customer experience.

CEO
Anthony Minessale
I've been working in the telecommunications industry for 20 years, and my life's work
has revolved around transforming telecom to software and making it programmable.

I have been working on making voice bots that don't suck since they sucked. But I'd like
to think we made them suck a bit less and made them more accessible to the world.
Before FreeSWITCH, IVRs and voicemail used to cost 100k for a physical server that was
converted to pure software.

Like the Internet, when it was new to the general public, as soon as LLMs that could be
consumed at scale over a reliable API appeared, all of its use cases were almost
immediately obvious. I think anyone can conclude that with an LLM generating human
language, you can wire it up to text-to-speech and speech-to-text or to an existing chat
interface.

My thesis on approaching this technology started with the hardest thing, voice, as making
a chat-based interface is almost trivial in comparison. I have a few key tenets that I
worked with initially.

1 Focus on the leading technology OpenAI

Like with computers, the Internet, and other inflection point changes, you can presume
that the core technology will eventually reach equilibrium and that business cases for
using the technology will be the main differentiator. So, rather than an early focus on the
model, I wanted to focus on the use case (allowing developers to build digital employees).
OpenAI has several things about how its APIS work that give a low-level developer more
power to exploit and simplify for end-user developers.

2 Leverage the AI in a way that limits its ability to be exposed to sensitive data by
combining it with existing voice menu technology

Our stack is designed as an extension of a more massive stack for general scalable
telecom services. The AI stack can actually call into a traditional voice menu to collect
sensitive info from the user. Then, it can save a meta-data token and just tell the AI that
the data was collected without it ever actually interacting with it.

3 Create an environment for developers that is as easy to use as the Web

http://freeswitch.org/
https://github.com/signalwire/digital_employees/tree/main

Our stack is inspired by UNIX and the Web and is, in essence, an extension of those
concepts. The AI Agent you create could be considered a new way to look at web forms
in a way that allows you to talk to them. Its prompts tell it how to talk to the user and
collect info, then use functions to post that data to your servers, where you can feed
information back and modify its behavior in several ways. Because our AI stack is one
method in an even larger telephony stack, it has all the powers of its parent platform to
work with to transfer calls, send SMS, and scale to any number of concurrent calls that
can be over phone lines, SIP VOIP, WebRTC and UCaaS applications on our platform.

4 Be the lowest latency period

Since the first experiment, I have been working on designs to eliminate latency. I have
developed several techniques that are solved mostly by ingenuity and deep knowledge of
C, and I have one of the most powerful communications platforms on the planet under my
belt.

I know the new GPT4o is trying to short-circuit the whole thing by doing some of the
work in a mobile phone and has models that can ingest audio, but they have a billion
dollars to burn, so I would expect nothing less. Meanwhile, I think we have a system that
actually does useful things and responds at a speed where you might even consider
slowing it down in some cases (which is configurable). We are able to use almost any
modern TTS natively and minimize latency at all points of orchestration.

Built to scale

Our AI orchestrator is just another cog in a proven powerful engine so applications can
scale forever with the horizontal implementation of its parent platform. Conversational
experience will always be a challenge (it still is with real humans, after all) but I think we
offer such a wide array of params and ways to approach it that we will evolve further and
further.

Vertically focused

We have an elaborate system called SignalWire AI Gateway SWAIG that is built on top of
the Agent framework and allows deep integration points that are the building blocks to
implement drop-in skills. We have several demos for things like booking a restaurant,
ordering flowers, cable technician, MFA bot, and more. Rather than focusing on training
models, we strive to leverage the least training possible to build working applications

https://signalwire.com/products/ai-agent?x-craft-preview=3e43425b0d36ec53ca9beaa406c96b84120d2620b313f8462262a07a1da7213fyoyllhuige
https://developer.signalwire.com/guides/voice/AI/best-practices-for-creating-a-signalwire-agent/#crafting-the-initial-prompt-for-the-ai
https://signalwire.com/blogs/developers/bobbystable-ai?x-craft-preview=3e43425b0d36ec53ca9beaa406c96b84120d2620b313f8462262a07a1da7213fyoyllhuige
http://signalwire.com/blogs/developers/e-flower-shop
https://signalwire.com/blogs/developers/digital-ai-employee?x-craft-preview=3e43425b0d36ec53ca9beaa406c96b84120d2620b313f8462262a07a1da7213fyoyllhuige
http://signalwire.com/blogs/developers/create-a-multi-factor-authentication-ai-digital-employee

quickly. We have a system in the works that will allow live vectorization of arbitrary
documents to provide on-demand

I think most people fake their results and we have a strict rule against that.

Realistic in Scope

This is key. The expectations that are often set by how cool AI is. Sometimes, it causes
people to make the wrong assumptions. This is nothing new as we, as engineers, often
refer to the National Park vs Bird xkcd comic.

We believe that systems using digital employees created with our stack can do a lot of
things immediately and even more as the technology progresses:

● Sorting calls for humans.
● Gathering information ahead vs. keeping customers on hold.
● Being voicemail without being voicemail.
● Acting as personal assistants.

What's different from others?

I've seen a few of the other AI stacks, and while we have some things in common, I think
our approach has some key differentiated elements.

Part of a fully Programmable Unified Communications stack.
The AI agent stack is tethered to a horizontally scaling UCaaS, CCaaS, CPaaS platform.
You can access the agents from SIP, PSTN, WebRTC UCaaS applications not limiting the
experience to over the phone.

Scaling Complexity

As your needs evolve, you can deliver dynamic content to generate on-demand agents or
build out SWAIG services to allow your agent to get more and more technically capable.

Context Switching

https://xkcd.com/1425/
https://signalwire.com/technology/programmable-unified-communications?x-craft-preview=3e43425b0d36ec53ca9beaa406c96b84120d2620b313f8462262a07a1da7213fyoyllhuige

The agent can be dynamically altered mid-conversation to change its focus or core
prompting so you can have a general Agent who suddenly becomes completely focused
on finding you a good movie to watch and then suddenly able to book a restaurant
reservation. There is also a "steps" mode that will force the agent down a series of
pre-determined steps where its core mission is updated as it completes each one. This
could be combined with context switching to do a more thorough job.

Sliding Window

Rather than continually posting the entire conversation to the AI, a sliding window can be
defined to limit the conversation to a certain number of turns. I have an example where
it's wired into an infocom text adventure from the 80's where it gets you to say what you
want to do and feeds it to the game (no need to save the whole conversation).

A simple digital employee can be created as a single JSON file that can be hosted on our
systems or delivered over webhook.

Multiple Voices, Languages and Fillers

An agent can have a single muti-lingual voice or different voices for each language and
can switch between them just by asking it to. Each language can have optional fillers
which are a list of phrases to indicate the agent is looking something up where the remote
service may contribute enough to latency that it has to say, "ok, one second" or "hold on."
For extreme cases like one example where you order flowers and it uses an AI image
generator to text you a picture of the flowers you describe, a sound file can be played like
pencil scribbling or keyboard typing.

Media Files

The agent can play a looping background sound like people talking in a coffee shop or
kids playing in a park or a busy office to add to the experience. Via SWAIG the agent can
be instructed to play a file as part of the conversation. For example, I had a "duck
debugger" who offers to help you find your problem and pretends to ask a rubber duck
who quacks in response to your questions.

Video

https://github.com/signalwire/digital_employees/tree/main/server/Perl_Examples/FlosFlowers2

If the agent is called over a video enabled line, it can use a series of mp4 files to simulate
a state of idle, paying attention, and talking. If it's instructed to play a video file, in place
of its avatar, it can stream the video to the remote user. I have plans to eventually have it
snapshot your inbound video and "see" what is in the picture.

Advanced Barge Cutoff / Adjustable Latency

To pursue the best conversational experience, the agent defaults to a behavior where if
you start talking over each other, not only does it stop and let you win, but it also
combines everything you are saying into a single turn and removes any early responses.
So if you are talking to the agent with many pauses in your speech pattern and the agent
starts answering too soon, just by continuing to talk, it will adjust to the new combined
utterances and form a completely new response.

Built-in Post-Prompting and full logging and debugging

A post-prompt can be defined to do a final action such as summarizing the conversation,
formulating a pizza order into a json blob, etc. Special SWAIG functions are available at
the beginning and end of the conversation to take a leading or final action in particular
cases.
Debugging webhooks can be defined to obtain mid-conversation details, so you know
what's going on as it works.

Unified support for ASR/TTS

All of our supported ASR/TTS interfaces are available to the AI and the normal voice menu
system, so you can mix and match advanced AI portions of the conversation with classic
voice menu techniques. Currently, we support Elevenlabs, Google, PlayHT, and Amazon
Polly, and adding more is trivial. Any new ones appear in all aspects of the platform.

Persistent Conversation Tracking

Several features enable the agent to be seeded with information from a previous call so
you can provide the sense that it knows what happened in previous conversations.

Ability to receive chat or SMS during the conversation

Messages can be sent to the agent while you are talking to it on the phone, allowing you
to chat or SMS with it while you are talking to it, for cases like sending your email without
reading it out loud or getting helpful links from the agent. The Santa Claus example asks
you what you want for Christmas and then sends you links at Amazon. The flowers
example asks you what flowers you want and who to send them to and texts them a
custom AI-generated picture of flowers based on your input.

SWAIG

The SignalWire AI Gateway is a native interface that is immeasurably flexible as part of
our AI stack. It extends the basic 'functions' feature from the language model into a
system that allows the developer to create solutions with evolving complexity, starting
with static file and template-driven data expansion and moving on to full remote custom
webhooks.

https://developer.signalwire.com/guides/voice/AI/holiday-special-santa-ai/

A Definitive Guide to Selecting Your AI Voice Agent

Part 1: Introduction to AI agents

Imagine a voice assistant that's designed to work alongside your team, handling repetitive tasks
and freeing up more time for live agents to focus on what they truly excel at: providing
personalized, human touchpoints for your customers.

An AI agent is designed to streamline operations such as call transfers and appointment
scheduling, empowering employees to create better customer experiences. The AI acts as a
digital tool in your team's toolkit, elevating everyone's efficiency and effectiveness.

Although you might typically build an interactive voice response system (IVR) to sort incoming
calls, an IVR does not actually understand what a caller wants. It is simply there to transfer the
call or repeat a pre-recorded message based on fixed logic.

IVRs that misunderstand our queries can lead to a loop of repeating instructions, leaving the
caller stranded and frustrated. Whether it’s calling a pharmacy, a doctor’s office, or a phone
service company, getting stuck in a loop with a barely-responsive phone tree that refuses to
transfer you to a live agent is a poor customer experience.

An AI voice agent provides natural and engaging conversation with the caller, allowing customer
service representatives to offload repetitive calls to efficiently accomplish complex tasks. The AI
can perform the initial step of greeting the caller, answering questions, and troubleshooting
common issues before transferring the call to the appropriate agent. And it will understand
immediately if the caller cuts in and demands to be transferred to a live agent!

[visual inspo:]

In addition to frustrating callers, integrating a traditional IVR or automated agent involves
complex code, logic, and engineering expertise. But what if you could quickly and easily deploy
a virtual agent that goes above and beyond the capabilities of traditional IVR?

Part 2: What does an AI agent do for you?

Delivering exceptional customer service is crucial for success and plays a pivotal role in shaping
a company’s reputation. Customers expect personalized and efficient interactions, and
businesses need to find innovative ways to meet these expectations while reducing costs and
improving operational efficiency.

Relying too heavily on IVRs can lead to unhappy customers when callers find themselves stuck
in long queues, or waiting for assistance from live agents when the IVR can’t understand what
they want. IVR systems and automated agents often lack the ability to adapt to human variance
and fail to deliver the natural experience that customers desire.

An AI agent can handle high call volumes, automate routine tasks, and improve response times,
all while maintaining a natural and engaging conversation with customers. It can process vast
amounts of data and offers users increasingly accurate and personalized responses.

With adaptability and intelligence, AI paves the way for a new era of customer service, where
robotic interactions are replaced by meaningful conversations. By automating responses to
common queries, order tracking, FAQs, and basic troubleshooting, AI agents free up human
agents to focus on more value-added interactions.

For businesses aiming to provide an unparalleled customer experience, AI agents offer a
glimpse into the future of customer service. The ability to understand, engage, and assist
customers in their preferred language while seamlessly integrating with existing systems is
game-changing.

The versatility of AI agents makes them suitable for a wide range of businesses. Small
businesses struggling to scale up can benefit from 24/7 availability, allowing customers to
access routine information and assistance at any time. Global enterprises can use an AI agent
to efficiently route calls in any language to the appropriate departments while maintaining
meaningful interactions.

With an AI agent, you can ensure that your customers receive prompt and personalized support
around the clock.

Part 3: How an AI agent can grow your business
The transformative technology of artificial intelligence has diverse applications across industries.
Implementing AI into customer service operations is an effective way to remain competitive
anywhere in today’s market. According to a 2022 study by IBM, over one-third of organizations

https://www.ibm.com/watson/resources/ai-adoption

implementing AI to improve customer care were doing so in order to improve live agent
productivity and create more personalized interactions. 28% were using AI to decrease wait
times.

[visual: one-third of organizations implementing AI to improve customer care were doing so in
order to improve live agent productivity]

There are many ways to use AI to cut costs, improve efficiency, and grow your business. With
an AI agent, any call center functions can be easily streamlined, like sorting incoming support
calls, summarizing the issue before transferring, recording customer issues and troubleshooting.
There are also some specific use cases where AI agents excel:

Use Cases

Virtual receptionist
AI agents are proficient virtual receptionists. They optimize calls with intelligent automated
conversations, providing personalized greetings and instant information retrieval.

Virtual receptionists do more than just replay pre-recorded messages; they can perform actions
such as transferring calls, scheduling meetings, or taking messages, allowing the human
receptionist to focus on more involved tasks. This not only improves efficiency but also delivers
exceptional first impressions to callers.

If a customer were to reach out at 2AM, a virtual assistant could provide this customer with
immediate, AI-powered support. Calls are answered during off hours and important information
is recorded for those who need it the next day.

Customer support
[visual inspo: customer support routing through ai agent]

AI agents empower customers by providing intelligent self-service and accurate issue
resolution. By retrieving customer information and taking actions to open or close support
tickets, the AI agent streamlines incoming support calls.

The AI can summarize the issue before transferring the call to live support, reducing response
times and increasing agent efficiency. Customers can get the help they need faster, and even
successfully troubleshoot and resolve basic issues.

Managing reservations and appointments
AI agents efficiently manage reservations and appointments. Whether it's booking a table at a
restaurant or scheduling a medical check-up, the AI system streamlines the process, ensuring
accuracy and convenience for both businesses and customers. This automation improves
customer experiences while reducing administrative overhead.

If a medical practice were to implement an AI receptionist, for example, patients could book
appointments, inquire about clinic hours, and receive automated reminders for upcoming visits.
This streamlines administrative tasks for the healthcare staff, allowing them to dedicate more
time to patient care.

Sales and marketing insights
AI agents’ ability to observe customer behavior at scale allows for the collection of more data
than humanly possible. An AI agent can record and even transcribe invaluable data, including
customer interactions, preferences, and pain points. This can be used to inform sales,
marketing, and other analytics efforts, allowing you to optimize strategies and tailor marketing
campaigns for maximum impact.

Enhanced spam filtering
Security is paramount, and AI agents can play a pivotal role in blocking out spam and scam
calls. It can filter spam by analyzing incoming caller IDs and detecting potential bot calls,
safeguarding your business from fraudulent activities and ensuring a secure communication
environment.

Polling data and surveys
AI agents can efficiently conduct polling by making automated phone calls, gathering data on a
large scale. This automation not only saves time but also ensures accuracy in data collection.

Election season in the United States involves extensive phone banking and outreach. Instead of
relying solely on traditional phone polling, interviewers can deploy AI agents to reach a broader
audience. These agents can conduct surveys via phone calls, collecting valuable data on voter
preferences, concerns, and demographics.

Part 4: What to look for in an AI Agent

[visual: what to look for in an AI agent - voice capabilities, Efficiency, Personalization,
Multilingual capabilities, data-driven insights, adaptability, low-code, no code options,
programmable actions]

Customer service no longer has to be a mundane task handled exclusively by human agents. AI
agents can step in to revolutionize the way businesses interact with their customers. Depending
on your company’s needs, there are a few features that are key to think about when it comes to
finding the right AI voice agent for you:

Voice, not just chat
AI-powered chatbots are quite common, and have been around for years. AI voice agents
introduce a novel approach to customer service with AI-powered voice. These agents are
designed to replicate the experience of talking to a real person and respond to human variance,
parsing nonsense from the real logic behind inquiries.

Efficiency
AI agents should speed up response times and connect callers to the right agents more
efficiently. They handle routine questions, allowing human agents to focus on more complex
issues. They deliver consistent service quality, ensuring a positive customer experience every
time. Their 24/7 availability guarantees customers receive support regardless of the time zone
or business hours.

https://signalwire.com/blogs/developers/using-signalwire-ai-agent-to-create-a-surveybot

Reduced costs
By automating repetitive tasks, AI agents in turn save money on labor and operational costs. AI
agents also only incur costs while they are on the phone; they do not need to be paid by the
hour or by the day. Additionally, eliminating the need for complex code reduces the reliance on
specialized expertise, which significantly lowers development costs and accelerates the
time-to-market for conversational AI.

Personalization
A good AI agent offers nuanced, context-aware, natural interactions. It's not just about
automated responses; it's about understanding your customers' needs, preferences, and
providing tailored assistance. Integrations with backend databases and third-party applications
enable personalization and data analytics, delivering a high-quality user experience.

Multilingual capabilities
AI agents should enable you to connect with a diverse global customer base with support for
various languages. This is particularly valuable if you have an international clientele. With
multilingual support and the ability to understand different dialects, AI agents allow businesses
to engage with a global audience effortlessly, breaking language barriers and expanding your
reach.

Data-driven insights
Unlike traditional systems, AI agents can offer in-depth analytics and collect data beyond what is
humanly possible. An AI agent can not only record calls, it can transcribe them, making it simple
to sort through customer conversations later on. This data can be used to understand customer
behavior, preferences, and pain points, helping you optimize your strategies.

Adaptability
An AI agent's intelligence extends beyond pre-defined instructions. It possesses the ability to
comprehend and respond to queries beyond a scripted format. This adaptability should enable it
to engage in meaningful conversations with customers, enhancing the overall customer
experience.

While traditional IVR systems may struggle with the natural variance in human speech, AI
agents excel. They should be able to understand and respond to queries beyond scripted
formats, engaging in meaningful conversations with customers and getting smarter with every
call, enhancing the overall customer experience.

Low code, no-code options
Anyone should be able to build their own AI-powered voice applications. Easy-to-use interfaces
allow for quick deployment of simple AI agents with absolutely no code.

https://signalwire.com/blogs/product/build-nocode-ai-agent

Implementing AI solutions can be challenging, especially for small and midsize businesses that
lack the resources, skills or infrastructure to develop and deploy AI applications. But a no-code
builder allows anyone, even those with no engineering background, to quickly build and deploy
an AI agent.

A no-code platform simplifies the process of building AI applications that are easily trained and
customized. This simplicity streamlines the development process, which delivers AI applications
to your existing infrastructure faster.

A user-friendly interface is a necessity. With basic technology skills and plain text language,
users should be able to make quick and effortless changes to their AI agents, eliminating the
need for time-consuming coding and deployment cycles.

Programmable actions
With programmable voice capabilities, you can create more dynamic and versatile voice
applications. For creators and developers, a robust AI agent enhances customization and
flexibility with programmable actions. You should be able to integrate with backend CRM
systems for relevant responses and specific actions if desired.

This enables you to, for example, send SMS messages or access customer information from
backend CRM databases. These integrations empower AI agents with real-time access to
relevant data, enabling them to handle customer queries more efficiently and deliver high-quality
personalized interactions.

Part 5: What to look for in a vendor
If an AI agent sounds like something that could help your business reduce costs, increase
revenue, and decrease repetitive tasks for employees, the next step is to evaluate vendors. The
number of products leveraging AI is expanding rapidly. Consider what functions are necessary
for your AI agent, any data it will need to access, and the technical requirements involved to
implement AI.

[visual:
What does your business need from AI?

Cost benefit analysis
What role will AI take on?
What problem will AI solve?
What functions does your AI agent need to have?
What are your technical requirements?]

Once you understand your own needs from AI, and you have evaluated individual products,
look to vendors who have:

https://signalwire.com/blogs/developers/build-an-ai-powered-appointment-reminder-application

Strong documentation and developer community
Resources for getting started and maintaining new technology are key to the success of any
project. Look for extensive, user-friendly documentation to assist developers in integrating AI
agents seamlessly into their systems.

Engaged, active developer communities are also helpful when trying new technology. Look for a
vendor who fosters a thriving developer community where you can learn, share, and collaborate
to maximize the potential of AI voice agents.

Responsive customer support
Responsive customer support is the biggest necessity for any technical product. You need a
team that is committed to providing world-class, responsive assistance to ensure a seamless
experience.

Seek out a vendor who takes pride in providing world-class customer support. With a
responsive and helpful team, your questions and concerns will always be addressed promptly.

Depth of Knowledge
Look for feature-rich offerings in an AI agent. When assessing vendors, it's essential to compare
the features they offer, and how they respond to specific requests about your use case. When it
comes to AI voice agents, you don’t just need a partner who excels at AI technology - you need
a partner who excels at voice capabilities and is familiar with other communications
technologies.

About SignalWire AI Agent
SignalWire's team is the driving force behind the creation of the AI Agent. Built by the minds
who created the FreeSWITCH open-source project, SignalWire has unmatched, extensive
expertise and a profound understanding of voice technologies.

With a responsive customer support team unrivaled in the industry and a thriving community of
developers behind it, SignalWire offers an AI agent that is backed by all the resources you need
to get started. Options for programming your own custom AI are available, but with a
user-friendly design that requires minimal coding for rapid development. This makes our AI
Agent accessible to individuals with varying technical backgrounds.

Users can easily instruct the SignalWire AI Agent on how to respond and behave in different
scenarios with plain text instructions. And when it’s not easy, the support team and the
community can be reached quickly.

[visual:

https://signalwire.com/products/ai-agent
https://freeswitch.org/

Checklist for SignalWire
Strong documentation
Thriving developer community
responsive customer support
Depth of knowledge]

][visual: Find your best new employee
Friendly, helpful, always in a good mood +
Doesn’t need breaks, Available 24/7 +
Depth of knowledge

SignalWire AI Agent is designed for business leaders who are focused on delivering
best-in-class customer experiences. No minimums required; pay only for what you need.
Whether you're a small business looking to scale or a larger business aiming to cut costs,
SignalWire AI Agent can streamline your call center operations and improve your customer
experiences.

Buttons:

View demo

Learn more about SignalWire AI Agent

https://signalwire.navattic.com/ii2v037u
https://signalwire.com/products/ai-agent

CEO
Anthony Minessale
Real-time communication technologies, such as PSTN, SIP, and WebRTC have
revolutionized the way we connect with each other. However, managing and
customizing these communication channels can be a complex task.

That's where SignalWire Markup Language (SWML) comes in. SWML is a JSON
representation of a call flow that instructs servers how to behave during real-time
communications. It is similar to traditional CPaaS solutions, but offers more
flexibility and power thanks to the underlying technology stack.

In this post, we will explore the features and benefits of SignalWire SWML, discuss
its advantages over older CPaaS solutions, and provide some use case examples
to demonstrate its capabilities.

Understanding SignalWire SWML
SWML is a powerful tool that allows businesses to define their call flows and
customize their Interactive Voice Response �IVR� systems. It provides a set of
instructions for various IVR functions, enabling businesses to create AI-powered
virtual assistants, gather information from callers, and execute remote procedure
calls for instant processing.

One of the key advantages of SWML is its integration with FreeSWITCH, which
offers a wide range of features and flexibility. With SWML, businesses can build
AI-powered IVRs that can understand natural language, interact with callers, and
perform complex tasks. This opens up a world of possibilities for businesses to
create personalized and efficient communication systems.

Key Features of SignalWire SWML
Visual Editor: Call Flow Builder
SignalWire provides a visual editor called the Call Flow Builder, which allows users
to create and customize their call flows using SWML. The Call Flow Builder

https://developer.signalwire.com/guides/what-is-sip/
https://my.signalwire.com/?page=relay-bins
https://signalwire.com/blogs/industry/what-is-ivr-interactive-voice-response
http://freeswitch.org/
https://signalwire.com/blogs/product/signalwire-call-flow-builder

simplifies the process of designing complex call flows by providing a
drag-and-drop interface. Users can easily add and configure various IVR
functions, define AI behaviors, and create seamless communication experiences.

AI�Powered IVRs
SWML enables businesses to build AI-powered IVRs that can understand and
respond to natural language. By configuring a language model, businesses can
create virtual assistants that can gather information from callers, execute remote
procedure calls, and provide instant responses. This opens up new possibilities for
businesses to automate processes, improve customer service, and enhance
overall communication experiences.

Spaces and Resources
SignalWire is divided into spaces, where each organization can create their own
space and define API users and subscribers. Subscribers and public callers can
connect to a SignalWire space through mapped addresses, similar to extensions in
a PBX. These addresses lead to resources created by the space owner and
represent various entities that can be called.

Resources can include scripts powered by SWML, multiparty conferences (rooms),
authenticated users using mobile apps or SIP registration (subscribers), AI agents
defined in the space, call queues, and more. SWML can route calls to different
resources, allowing businesses to create complex call flows and provide a
seamless communication experience.

REST APIs and Provisioning
SignalWire implements everything as REST APIs, allowing businesses to provision
and manage their communication resources programmatically. Users can create,
update, and delete resources using REST calls, either directly or through a remote
service. This provides businesses with the flexibility to integrate SignalWire into
their existing systems and automate various communication processes.

https://signalwire.com/blogs/ceo/introducing-signalwire-ai-agent-ai-meets-cpaas-with-instant-deploy
https://developer.signalwire.com/rest/

Advantages of SignalWire SWML over older CPaaS
solutions
While older CPaaS solutions have been a popular choice for building IVRs and
managing call flows, SignalWire SWML offers several advantages that make it a
more modern and powerful solution.

JSON�Based Format
SWML is based on JSON �JavaScript Object Notation), a lightweight
data-interchange format. Unlike older CPaaS solutions, which use XML, SWML's
JSON-based format is more modern and aligns with the industry's shift towards
using JSON for data exchange. Programming languages widely support JSON, and
JSON provides a more flexible and readable format for defining call flows.

Complete Call Flow in a Single Document
SWML allows users to express a complete call flow as a single document. This
means that all the instructions and configurations for a call flow can be contained
within a single SWML document, eliminating the need to fetch additional
information from external sources. This makes it easier to manage and transfer
call flows between different sections within the document. This also allows more
low-code no-code possibilities for simple call flows.

Powered by FreeSWITCH
Like much of SignalWire, SWML is powered by FreeSWITCH, an open-source
communication platform built by the founders of SignalWire and known for its
flexibility and extensive feature set. This power is harnessed and made available
to everyone in a secure, easy-to-understand cloud interface.

Unified Audio and Video Support
SignalWire provides support for both audio and video calls and APIs over a single
media service. This means that businesses can seamlessly transition between
audio and video communication channels without needing separate services or
configurations. This unified support for audio and video sets SignalWire SWML
apart from traditional CPaaS solutions and makes it a more versatile solution.

Use Case Examples
To better understand the capabilities of SignalWire SWML, let's explore some use
case examples:

AI�Powered Virtual Assistant
Imagine a business that receives a high volume of customer calls and wants to
automate the process of gathering information from callers. With SignalWire
SWML, the business can create an AI-powered virtual assistant that can
understand natural language and interact with callers. The virtual assistant can
ask questions, collect information, and execute remote procedure calls to retrieve
relevant data. This not only improves efficiency, but also enhances the overall
customer experience.

Call Queues and Routing
A customer support center often receives a large number of incoming calls, and
it's crucial to handle them efficiently. SignalWire SWML allows businesses to
create call queues where callers can get in line to talk to a support representative.

SWML can be used to route calls to the appropriate queue based on various
criteria, such as caller preferences, agent availability, or the nature of the inquiry.
This ensures that callers are connected to the right person and reduces wait
times.

Multiparty Conferences
SignalWire SWML enables businesses to create multiparty conferences, also
known as rooms. These conferences can be used for various purposes, such as
team meetings, webinars, or virtual events.

SWML allows businesses to define the behavior of the conference, such as who
can join, how participants are muted or unmuted, and what actions can be
performed during the conference. This provides businesses with the flexibility to
create customized conference experiences tailored to their specific needs.

https://signalwire.com/blogs/ceo/introducing-signalwire-ai-agent-ai-meets-cpaas-with-instant-deploy

Secure Data Collection
In certain scenarios, businesses may need to collect sensitive information from
callers, such as personal identification numbers or credit card details. SignalWire
SWML provides a secure way to handle such data by allowing businesses to
create secure subroutines within the call flow. These subroutines can be used to
collect and verify sensitive information without involving the AI-powered virtual
assistant. This ensures that sensitive data remains private and secure.

Security and Privacy
SignalWire takes security and privacy seriously. All APIs use encryption, ensuring
that data is transmitted securely between the client and the server. In telephony
signaling, callers can only interact via voice or by dialing digits, limiting the
potential for unauthorized access. In web applications, data is sent over a secure
connection to the server, protecting it from interception or tampering.

When it comes to AI-powered interactions, SignalWire SWML provides a
mechanism called SWAIG �SignalWire AI Gateway) to handle sensitive data
collection. SWAIG allows businesses to section off any sensitive data collection,
ensuring that it happens in a secure and isolated environment.

For example, businesses can define a SWAIG function to authenticate callers,
which can be executed using SWML. This approach keeps sensitive data separate
from the conversation and minimizes the risk of data breaches.

Conclusion
SignalWire SWML is a powerful tool that empowers businesses to create
customized and efficient communication systems. With its JSON-based format,
integration with FreeSWITCH, and support for AI-powered virtual assistants,
SWML offers a modern and flexible solution for managing call flows.

Whether it's building AI-powered IVRs, creating multiparty conferences, or routing
calls to different resources, SWML provides businesses with the tools they need
to deliver exceptional communication experiences.

SignalWire SWML is poised to become the go-to choice for building robust and
scalable communication systems. Its ease of use, extensive feature set, and focus
on security make it an ideal solution for businesses of all sizes.

So, if you're looking to take your communication systems to the next level,
consider SignalWire SWML. With its powerful capabilities and seamless integration
with FreeSWITCH, SWML is the future of real-time communications.

To learn more about SignalWire SWML and how it can benefit your business, sign
up for a free test account, and bring any questions you have to our community
Slack or forum.

https://signalwire.com/signup
https://signalwire.com/signup
https://slack.signalwire.community/
https://forum.signalwire.community/

Call Fabric is the effort to make a horizontal scaling self-serve communication platform where
users can create and arrange communication pathways on-demand. This encompasses all the
features of an IP PBX, UCaaS, Soft-Switch and makes the features available as high-level
primitives. In programming, a primitive are the building blocks you have to work with when
creating the code. Since we are trying to reduce complexity, the primitives in Call Fabric, known
as Resources, are features deconstructed to the ideal puzzle pieces that can be arranged in
endless combinations. Rather than spending time programming these very, very complex
concepts, APIs are just used to create and position resources.

A resource is simply something that "can be called," meaning an audio/video/text stream can be
established to it.

Initial resources include:

Scripts and markup: (SWML/Laml/Relay) Create a program that can interact and control the
call using logic. This is the basic building block of SignalWire V1 (before call fabric)

Rooms: A room is a multi-user conference where many callers can talk over audio or video.

Subscribers: Subscribers represent a registered user. The other end of a subscriber is a
mobile app or private phone that is registered to the platform. A private line.

AI Agents: A digital employee powered by AI that can interact with the caller, transfer calls, do
actions in the real world.

Callflow Builder: A visual representation of a call flow that processes calls and routes them
based on logic such as time of day and other criteria.

These resources can be created and managed from the SignalWire Dash and made accessible
by assigning it a phone number, web address, or SIP address, making it publicly available.

EXAMPLES

Add 2 subscribers give them both phone numbers; they can call each other via the SignalWire
Network or call any valid phone number on the public telephone network. A normal mobile
phone or landline can call the subscribers by dialing their number.

Create a room and give it a web address and a phone number. The subscribers can find the
room and join it from the mobile app. Guests could go to the web address in the browser to
reach the room, and mobile and landlines could dial the number to get to the room.

Make a call flow builder that sends calls during business hours to both of the subscribers at the
same time, and when it is outside business hours, forward the calls to an AI Agent who takes a
message and sends it to you. Give that call flow builder a phone number and a web address,
and allow customers to dial the number or visit the web address embedded in the corporate
website to place the call.

SignalWire AI Telecom Agent Market Context

High-Level Summary

Core Market Challenges:

● Building enterprise-grade omnichannel conversational AI agents that can handle
complex tasks across multiple channels (voice: PSTN, SIP, WebRTC; text messaging:
SMS/MMS/RCS/OTT messengers/web chat; video) while maintaining ultra-low latency
(<500–600 ms per turn).

Key Requirements:

● Low Latency at Scale: Ensures lifelike conversations, especially when interfacing with
third-party APIs and databases.

● Task-Oriented AI Agents: Keeping AI agents on task while they complete complex
goals.

● LLM Hallucination Avoidance: Ensuring brand alignment and factual grounding.
● Omnichannel Integration: Handling multi-channel conversations across different

communication protocols without losing context.
● Complex State and Context Management: Maintaining real-time transcription,

summarization, and memory for long and multi-session conversations.
● Real-Time API & Database Integration: Ensuring reliable interactions with CRMs,

ordering systems, and knowledge bases.

Competitive Landscape

● Major telecom platforms struggle with AI + telecom pipeline integration.
● Most competitors suffer from 1–3 seconds of roundtrip latency.
● Twilio’s “ConversationRelay” attempts to address this, but requires developers to

manage WebSockets and LLM workflows manually.
● Other voice AI vendors rely on third-party telecom connectivity (Twilio, Vonage), which

introduces latency and scaling issues.

SignalWire’s Advantage

● “Call-center grade” telecom orchestration with native LLM, TTS, and STT
integration.

● Multi-threaded, bare-metal telecom<>LLM pipeline delivers ultra-low latency AI
agents across voice, text messaging, and video.

● Unified platform (SWML, ai.params, SWAIG) to orchestrate telecom, structure
conversations, define AI agent roles, goals, and toolsets.

● Abstracts away complexity related to concurrency, scaling, and multi-channel
integration, allowing developers to focus on differentiation.

● Real-time transcription, summarization, and translation for memory and complex
conversational flows.

● Integrated with multiple TTS/STT providers and direct OpenAI API interface.
● Enterprise-grade features: Global edge network, compliance, logging, analytics, and

security.

Biggest Challenges in AI + Telecom

1. Maintaining Ultra-Low Latency

● Why It Matters: Conversational AI needs near 500 ms round-trip latency for natural
speech.

● Scaling Complexity: Handling thousands to millions of concurrent AI calls requires
optimized infrastructure.

● API Delays: Third-party integrations (CRMs, databases) add response time.

2. Avoiding LLM Hallucinations

● Fact Grounding: Modern LLMs can generate plausible but incorrect responses.
● Brand Consistency: AI answers must align with company guidelines and prevent drift.

3. Managing Context & State

● Memory Retention: AI must “remember” prior conversation details over extended
interactions.

● Multi-Session Handling: Ensuring AI retains context across multiple calls.
● Context Loss Prevention: Requires detailed tracking of user data and preferences.

4. Third-Party System Integration

● Essential for Task Completion: AI must interact with CRMs, ticketing, ordering, and
knowledge bases.

● Unpredictable API Latency: External API response times vary and can cause delays.
● RAG Database Performance: Ensuring accurate, real-time knowledge retrieval.

5. Omnichannel AI Across PSTN, SIP, WebRTC, and Messaging

● Different Protocols, Different Constraints: AI must dynamically adjust to voice, text,
and video environments.

● Unified Conversational Memory: Conversations need seamless handoff across
different channels.

SignalWire’s Solution

● Integrated Telecom + AI Stack: No need for third-party voice platforms, reducing
latency.

● SWAIG (SignalWire AI Gateway): A complete AI framework with built-in orchestration.
● Multi-Channel AI Adaptation: Works seamlessly across PSTN, WebRTC, SIP, and

messaging without breaking session continuity.
● Enterprise-Ready Deployment: Built-in compliance, logging, and analytics for

businesses deploying AI at scale.

Conclusion

SignalWire’s AI-powered telecom platform overcomes the limitations of traditional CPaaS and
UCaaS by embedding AI directly into the media stack. With a focus on ultra-low latency,
omnichannel adaptability, and real-time intelligence, SignalWire enables businesses to build
scalable, enterprise-grade AI communication solutions.

Marketing Copy for Developers – SignalWire’s
Low-Latency, Low-Bandwidth AI Communication Platform

Efficient, Scalable, and Seamless: How SignalWire Optimizes AI
Communication for Developers

1. Introduction: The Challenges of Applied AI Communication

The Problem:

In AI-powered communication, most systems sacrifice efficiency, leading to higher costs
and frustrating delays. SignalWire redefines the standard with solutions optimized for
real-world performance.

Context:

Many platforms rely on streaming raw audio via WebSockets, which causes:

● 1–3 second latencies
● High bandwidth costs
● Heavy system loads

These inefficiencies break the flow of natural conversation and frustrate developers.

Problem Statement:

Traditional architectures are fragmented and inefficient, resulting in:

● Suboptimal performance
● Rising costs as usage scales

2. SignalWire’s Solutions: Cutting Costs and Latency While Improving
Performance

Sub-500ms Latency

● The Problem: Most platforms have 1–3 seconds of latency due to fragmented systems
and reliance on external CPaaS services.

● SignalWire’s Solution:

○ AI is natively integrated into SignalWire’s media stack (eliminating third-party
processing delays).

○ The result: an average latency of ~500ms, ensuring smooth, real-time
interactions.

Internalized Raw Audio Handling

● The Problem: Streaming raw audio over WebSockets increases bandwidth and
delays.

● SignalWire’s Solution:
○ Processes raw audio within its media stack, minimizing network overhead.
○ Uses low-bitrate encoded audio for communication.

Reduced Bandwidth Costs

● The Problem: Streaming raw audio exceeds 64kbps per stream, driving up costs.
● SignalWire’s Solution:

○ Uses low-bitrate encoding externally while processing high-quality raw audio
internally.

○ Significantly reduces bandwidth needs without sacrificing quality.

Unified Media and AI Workflows

● The Problem: Many platforms treat AI and media handling as separate processes,
leading to latency and redundancy.

● SignalWire’s Solution:
○ AI is embedded directly into the communication platform.
○ Provides seamless speech-to-text (STT), AI processing, and text-to-speech

(TTS) workflows.

Real-Time Orchestration and Scalability

● The Problem: Scaling traditional AI systems often introduces delays and increases
system load.

● SignalWire’s Solution:
○ Built on horizontally scalable Call Fabric, enabling high call volumes without

performance loss.

Data Security and Compliance

● The Problem: AI workflows handling sensitive data risk breaches and compliance
failures.

● SignalWire’s Solution:
○ End-to-end encryption and metadata tokenization for secure, compliant

operations.
○ Adheres to GDPR and HIPAA standards.

3. Why Developers Choose SignalWire

Low Latency, High Performance

● Achieves an average latency of ~500ms, significantly faster than industry norms (1–3
seconds).

Cost-Effective Operation

● Reduces bandwidth costs through internal raw audio processing and low-bitrate
encoding.

Native AI and Media Integration

● Eliminates inefficiencies by embedding AI directly into the media stack, reducing
dependence on third-party CPaaS.

Global Communication Platform

● Combines AI, voice, video, and messaging into a single low-latency system.

Developer-Friendly APIs

● Tools like Call Flow Builder, low-code options, and modular APIs enable rapid
deployment and customization.

4. SignalWire’s AI Integration with Communication Systems

AI in Voice Communication Use Cases

● The Problem: Voice AI is closely tied to CCaaS and UCaaS systems, where
seamless integration is critical.

● SignalWire’s Solution:
○ AI capabilities bundled directly into its CPaaS platform.
○ Built-in support for STT, TTS, and real-time AI orchestration.

Conclusion

SignalWire is pioneering ultra-low-latency AI communication. By eliminating inefficiencies in
traditional CPaaS platforms, developers can build smarter, faster, and more cost-effective
AI-driven communication solutions.

Features Available in SignalWire but Not in FreeSWITCH

1. RELAY Call Control System
○ A WebSocket-based system for real-time call control, handling events and

enabling dynamic programming in any language.
2. SignalWire Markup Language (SWML)

○ Declarative scripting in JSON/YAML for defining call flows, AI agents, and
dynamic routing without external controllers.

3. Programmable Unified Communications (PUC)
○ A unified model combining CPaaS, UCaaS, and CCaaS into a modular,

programmable infrastructure.
4. AI-Driven Workflows

○ Native AI integrations for:
■ Real-time transcription
■ Live translation
■ AI Agent orchestration
■ Retrieval-Augmented Generation (RAG) for data-grounded interactions

5. Call Fabric
○ A resource-centric approach that allows composing telecom workflows

dynamically using:
■ Rooms (audio/video conferencing)
■ AI agents
■ Subscribers (user accounts for SIP/WebRTC registration)
■ Scripts (SWML and cXML)
■ Gateways (SIP trunking and interconnection)

6. Horizontal Scalability
○ Seamless global scaling with edge networks and geographic redundancy.

7. Integrated AI Agents
○ Framework for building and deploying natural-language AI agents for

conversational interfaces and task automation.
8. Omnichannel Communication

○ Unified support for voice (PSTN, SIP, WebRTC), messaging (SMS, MMS, RCS),
and video in a single platform.

9. Dynamic Context Switching
○ Real-time reconfiguration of workflows during active calls, e.g., transferring calls

or initiating AI actions without interruptions.
10. Live Transcription and Translation

○ Built-in tools for transcribing and translating calls in real time, enabling
multilingual support.

11. Low-Latency Media Handling
○ AI embedded directly in the media stack for sub-500ms latency in real-time

communications.
12. Data Security and Compliance

○ Built-in support for HIPAA, GDPR, PCI and other compliance standards, with
features like tokenized metadata and end-to-end encryption and secure payment
collection.

13. Resource Routing Engine
○ Intelligent routing of calls and messages to resources based on predefined rules

or dynamic input.
14. Low-Code and No-Code Tools

○ Call Flow Builder and other visual tools for creating workflows without deep
programming knowledge.

15. REST/RPC APIs
○ Dynamic control of communication resources via APIs for tasks like call

spawning, recording, and toggling workflows.
16. Twilio-Compatible cXML

○ Backward-compatible syntax for Twilio’s TwiML, allowing easier migration of
existing applications.

17. Storage-Backed Recordings
○ Integrated support for recording and securely storing media streams.

18. Unified Addressing System
○ Simplifies resource access with universal addresses across SIP, WebRTC, and

PSTN.
19. Composable Telecom Infrastructure

○ Breaks down communication systems into reusable building blocks for scalable,
flexible deployment.

Fundamental Differences Between SignalWire and FreeSWITCH

1. Abstraction vs. Granularity

● SignalWire abstracts the complexities of telephony into higher-level programmable
interfaces, enabling rapid development without managing underlying protocols.

● FreeSWITCH offers granular control over telephony, requiring deep domain knowledge
for configuration and operation.

2. Modularity and Composability

● SignalWire’s Call Fabric enables modular design, treating communication elements as
reusable resources.

● FreeSWITCH operates as a monolithic telephony engine, focused on single-server
configurations.

3. Scalability

● SignalWire supports horizontal scaling with edge networks and global redundancy,
ensuring reliability at hyper-scale.

● FreeSWITCH is inherently single-instance and requires external efforts to scale.

4. AI Integration

● SignalWire embeds AI directly into its media stack, enabling real-time transcription,
translation, and natural-language interaction with sub-500ms latency.

● FreeSWITCH lacks built-in AI capabilities, requiring third-party tools for similar
functionality.

5. Developer Enablement

● SignalWire provides developer-friendly APIs, low-code tools, and a declarative scripting
language (SWML).

● FreeSWITCH relies on developers' expertise to configure and extend its functionalities
through external scripts or modules.

6. Unified Platform

● SignalWire combines CPaaS, UCaaS, and CCaaS capabilities into a single,
programmable platform.

● FreeSWITCH is focused on VOIP and media processing, leaving application-level
functionality to be built externally.

7. Time to Market

● SignalWire's abstractions and ready-to-use components drastically reduce
time-to-market for communication solutions.

● FreeSWITCH requires significant setup, configuration, and integration efforts.

8. Integration

● SignalWire natively supports omnichannel communication and integrates seamlessly
with third-party tools like Salesforce.

● FreeSWITCH offers protocol-level flexibility but lacks out-of-the-box omnichannel
support.

SignalWire reimagines telephony as a modular, scalable, and programmable system, enabling
businesses to innovate faster and adapt to modern communication needs. FreeSWITCH, while
powerful, operates more like a foundational engine that requires extensive customization to
achieve similar results.

Model Context Protocol: Evolving to Work
Together with Real-Time Media Plumbing

Introduction
At SignalWire, we've spent years designing robust, real-time communications infrastructures,
notably FreeSWITCH and the SignalWire Cloud. Before the introduction of the Model Context
Protocol (MCP), we developed the SignalWire Markup Language (SWML)-a structured, YAML-
and JSON-based static markup language enabling dynamic interactions across voice calls,
video conferences, messaging, and AI-driven conversational agents. Additionally, we created
RELAY, a WebSocket-based RPC call control protocol specifically designed to manage live calls
remotely, ensuring low latency, state synchronization, and efficient error recovery.

For Conversational AI IVRs, SWML combined with our SignalWire AI Gateway (SWAIG) allows
applications to intuitively interact with REST APIs and execute structured RPC-like calls. Our
infrastructure explicitly supports robust, stateful real-time WebSocket connections, dynamic
AI-driven interactions, clear error handling mechanisms, explicit session and state management,
and well-defined message framing and flow control.

Evaluating the MCP Specification
When reviewing the MCP specification, we recognized and appreciated its ambition to
standardize interactions between Large Language Models (LLMs) and external services. The
schema demonstrates comprehensive thinking around defining prompts, resources, and
interactions. However, our extensive experience with protocols like SIP, WebRTC, RTP, and
high-volume real-time call control highlighted potential challenges in MCP's transport layer that
could limit practical scalability and reliability in demanding production environments.

Limitations of MCP’s Current Transport Approach

MCP currently uses "streamable HTTP," implemented via long-lived HTTP POST requests with
chunked JSON responses. This approach simplifies initial integration and is well-suited for
prototypes or demonstrations. Nonetheless, we identified several critical scalability limitations:

● Connection fragility: Persistent HTTP streams can become unstable, causing reliability
issues at scale.

● Fan-out difficulties: Managing multiple simultaneous streaming consumers becomes
increasingly complex.

● Lack of multiplexing: Limits the efficiency and scalability of concurrent interactions.

● Insufficient error handling and recovery: Current methods lack comprehensive
strategies for session resumption and connection recovery.

● Framing ambiguity: Absence of standardized framing complicates parsing and can
degrade reliability under heavy usage.

Real-World Lessons from SIP, RTP, WebRTC, and High-Volume Call Control

Deployments involving SIP, RTP, WebRTC, and our high-volume call control protocols
demonstrate that large-scale, real-time systems significantly benefit from robust transport
technologies. Lessons learned include:

● Multiplexing: Essential for efficient handling of thousands of simultaneous streams.
● Explicit session management: Robust session and connection resumption strategies

are critical for maintaining high availability.
● Built-in flow control: Prevents overload and ensures stable system performance.
● Standardized message framing: Simplifies parsing, reduces errors, and ensures

reliability at scale.

These proven transport mechanisms inherently provide the necessary reliability and scalability
required by demanding real-world scenarios.

Recommendations for Transport Enhancements
To address these identified limitations, we recommend future MCP iterations explicitly support or
clearly define alternative transports, keeping practical considerations in mind:

● WebSockets: While a logical option due to their real-time capabilities, scalability
considerations should be taken into account.

● Standard REST: A stateless REST-based approach could offer simplified client access
and reduce server-side complexity, greatly enhancing scalability.

● HTTP/2 or QUIC: Forward-thinking options providing efficient multiplexing, built-in flow
control, and significantly reduced latency, essential for quick response times in
LLM-based applications.

● Explicit session management: Strategies for robust connection establishment, error
recovery, and resumption.

● Clear framing standards: Binary or line-delimited JSON framing to enhance parsing
efficiency and reliability.

Quick response time is paramount when providing tools to LLM-based applications. Adopting
these enhancements would elevate MCP from its current prototype-friendly form to a fully
production-ready protocol capable of supporting enterprise-level scalability, performance, and
reliability.

Future Compatibility with SignalWire’s Infrastructure

The structured format of SWML and the extensibility of our SWAIG functions could naturally
integrate as an MCP client if the transport and scalability concerns were adequately addressed.
SignalWire’s voice AI kernel operates as a central hub, seamlessly connecting telecom features
with AI capabilities, coordinating voice interactions, listening, and cognitive processing via an
integrated LLM. Developers can define conversational behavior using prompts and callbacks
that map to SWAIG functions, enabling dynamic modifications of bot behavior, context
management, and feature expansions without implementing each functionality individually.

Given this existing architecture, integrating MCP would be straightforward and highly beneficial.
MCP could effectively extend SignalWire's robust conversational engine by providing additional
remote services that could be effortlessly plugged into the platform. Such integration would
amplify interoperability, further enhancing the adaptability and scalability of SignalWire’s
AI-driven conversational experiences.

SignalWire's existing infrastructure is well-equipped to support MCP’s JSON-RPC schema,
offering broader interoperability while preserving our native protocols' robustness and
performance.

Conclusion
MCP’s vision aligns closely with ours-enabling powerful, standardized interactions between
AI-driven agents and external resources. By incorporating transport-layer enhancements
informed by our extensive experience with SIP, RTP, WebRTC, and high-volume call control,
MCP can mature into a reliable, scalable protocol suitable for demanding real-time applications
at enterprise scale. We look forward to MCP’s evolution and strongly encourage proactive
incorporation of these recommendations to ensure broad industry adoption and effective
deployment.

SignalWire, the pioneers of Programmable Unified Communications (PUC) and
founders of the FreeSWITCH open-source project, today announced the launch of
their new conversation AI and voice integration platform, signalwire.ai. This
platform moves beyond typical “bolted-onˮ AI tools by offering developers a
full-stack solution, encompassing everything from transport to real-time
intelligence, ensuring audio, routing, and AI operate in sync.

Traditional IVRs often frustrate users with their reliance on rigid scripts and slow
processing times. In contrast, SignalWireʼs AI Agents offer dynamic, natural voice
interactions with ultra-fast response times with an average of 500 milliseconds.
By integrating AI directly into the telecom media stack, voice data remains
securely within the network, enhancing both performance and security, and
ensuring seamless user experiences.

"This isnʼt just AI added to phones; itʼs AI built directly into the core telecom
stack," said Anthony Minessale, CEO of SignalWire. "We designed this platform
for developers and contact centers to create powerful, intelligent agents that
function as fully programmable digital employees ready for real-time
performance at scale."

The platformʼs composable architecture ensures compatibility with PSTN, SIP,
WebRTC, mobile apps, and IP-based chat systems, enabling developers to rapidly
create and deploy AI Agents across various channels. Potential applications
include intelligent intake agents, multilingual assistants, contact centers,
concierge bots, post-call surveys, and advanced RAG-connected knowledge
agents supporting sales or customer support teams.

SignalWireʼs AI Agents are now available for immediate use through the SignalWire
Dashboard, as well as via our comprehensive APIs and SDKs. They require no
additional hosted infrastructure and fully integrate with other SignalWire
primitives, including Rooms, Gateways, and Subscribers.

About SignalWire

SignalWire is a full-stack communications platform optimized for low latency,
real-time control, and developer agility. Built by the team behind FreeSWITCH, it

https://signalwire.com/blogs/industry/ccaas-ucaas-cpaas-puc?utm_source=pr&utm_medium=pr&utm_campaign=&utm_content=blog
http://freeswitch.org/
http://signalwire.ai/
https://signalwire.com/blogs/developers/signalwire-datasphere-build-specialized-ai?utm_source=pr&utm_medium=pr&utm_campaign=&utm_content=blog
https://signalwire.com/blogs/product/call-fabric-resources?utm_source=pr&utm_medium=pr&utm_campaign=&utm_content=blog

offers a seamless environment for programming voice, video, messaging, and AI
applications—without the overhead of legacy systems or vendor sprawl. From
infrastructure to interaction, everything is unified, giving developers the power to
build responsive, event-driven communications at any scale.

Salesforce Q&A - SignalWire Overview

Describe the origins of SignalWire and your view on your competitive
position

SignalWire emerged from FreeSWITCH, an open-source project that transformed telecom by
enabling scalable, flexible, and programmable communications. SignalWire builds on this
foundation to give businesses full control over their communication workflows without the
complexity of managing hardware.

SignalWire leads the Programmable Unified Communications (PUC) category, combining the
programmatic flexibility of CPaaS with the unified capabilities of UCaaS and CCaaS. This
addresses key challenges in traditional solutions:

● Rigid on-premise systems that are expensive and hard to scale.
● Fragmented cloud services leading to poor integration.
● Resource-intensive DIY infrastructure.

SignalWire's competitive advantage comes from its composable telecom infrastructure
approach, where communication elements are modular, reusable resources that can be
programmatically assembled. Key differentiators include:

● Programmability through APIs, webhooks, and RPCs for real-time workflow changes.
● Low latency through native media stack integration.
● Global scalability with geographic redundancy.
● Cost efficiency through consolidated tools and automation.
● Developer-friendly open standards (SIP, REST, WebRTC).
● SWML for advanced call flows and dynamic workflows.

This enables businesses to build precisely what they need without vendor lock-in or fragmented
tools while maintaining enterprise-grade reliability and scale.

Describe how FreeSWITCH and SignalWire interact; do open-source
developers convert to paid SignalWire customers?

SignalWire serves as the sponsor for the FreeSWITCH open-source project. SignalWire uses
an enterprise version of FreeSWITCH loaded with proprietary features as one key component of
its platform. FreeSWITCH is mostly used by others in an on-premise environment, so as digital
transformation occurs, SignalWire is able to offer a more modern and flexible cloud-native
solution.

Describe how customers are using your products and key customer use
cases

SignalWire is used by developers to build AI agents, call flows, and other solutions. Calls can
originate from PSTN, SIP, WebRTC, and other sources, accessing and sharing the same
resources. SignalWire is also used by enterprises to build their own custom communication
solutions.

When a developer builds an AI agent or call flow using SignalWire, do they
still need a traditional CCaaS, UCaaS, or CPaaS solution?

Not in most cases. SignalWire focuses on providing the core real-time communications
(RTC) infrastructure and high-level primitives needed to build UCaaS and CCaaS applications.

Rather than competing with UCaaS/CCaaS solutions, SignalWire provides the underlying
infrastructure that enables these applications to be built. Through standards-based protocols
(SIP, WebRTC, etc.) and APIs, SignalWire can integrate with any system while handling
complex real-time media, routing, and scaling requirements.

High-level application features (like CRM integration and workforce management) can be
integrated through SignalWire's programmable interfaces, including webhooks, REST APIs,
and real-time events. This allows customers to:

● Build custom UCaaS/CCaaS solutions directly on SignalWire.
● Integrate SignalWire capabilities into existing applications.
● Use SignalWire as the communications backbone while leveraging other tools.
● Mix and match components through open standards and APIs.

Where does SignalWire fit in a CCaaS/UCaaS solution stack?

SignalWire sits between the customer and the underlying communications infrastructure.
It provides the core real-time communications infrastructure and high-level primitives
needed to build communication paths for UCaaS and CCaaS applications.

How do your products integrate with systems of record such as
Salesforce?

SignalWire’s APIs and webhooks allow for seamless integration with Salesforce and other
systems of record. This enables:

● Dynamic call and message routing based on customer data and behavior.
● Post-call data integration into any backend system.

Product Portfolio: AI Agents, SWML, APIs, Call Flow Builder, etc.

Describe the voice applications that can be built on SignalWire

SignalWire supports a wide range of voice applications, including:

● Call forwarding
● Answering machine detection
● Interactive Voice Response (IVR)
● Virtual assistants
● AI-driven customer interactions

Using SWML (SignalWire Markup Language) and APIs, developers can create flexible,
programmable call flows and integrate AI for advanced automation.

History:

We started FreeSWITCH because we wanted to solve our own challenging problems.

We could not find a stable, scalable way to implement our 2004 call center as a service product.
DIY solutions were a collection of random tools with constant stability and maintenance issues.
Premade solutions were massively expensive and still required physical data centers anyway.

We built FreeSWITCH on our vision of solving those problems, made a community, and used it
for insight. This took us well beyond the original goal. FreeSWITCH became so ubiquitous that
the world made many vertical products with it that generate billions of dollars a year.

SignalWire POV:

At SignalWire, we empower businesses with easy-to-use and customizable cloud
communications tools. Programmable Unified Communications supplants one-size-fits-all
solutions, sparking innovation and growth.

Telecommunications (technology-assisted human communication) is one of the most important
technologies humankind has ever developed. It has evolved from written messages on paper
carried by messenger to a vast array of devices and mediums, such as telephones and
computers, using audio and video.

Telecommunications have pushed businesses forward with every advancement as long ago as
the telegram. The more information can be easily shared or discussed, the better it is for buyers
and sellers alike. Modern telephone networks and the Internet have pushed this concept even
further. Industries like entertainment, health care, education, and customer service have all
benefited greatly.

Before SignalWire began, our founding team spent the better part of 2005-2015 helping to
innovate the concept of IP Communications at scale with disruptive open-source technology.

Unfortunately, in recent times, there has been a massive slowdown in the evolution of this
technology. Large providers often sacrifice innovation to avoid cannibalizing profits, which leads
to rigidity and suffering for end users. Innovation was stifled, and this short-sightedness caused
a traffic jam ahead of us.

We started SignalWire because we wanted to take our pioneering communications technology
that took decades to develop and present it in a digestible format that allows customers to
deploy exactly what they want, freeing them from the obstacles of time, cost, and resources.

We fundamentally believe in our dedication to removing obstacles and paving the way forward
for each other as well as our customers. That mentality drives everything we do and empowers
us to innovate and grow as a global community.

There is a crisis in the communications industry.

Strategies to execute the transformation to cloud communications infrastructure often present
three significant pitfalls. These can lead to a reluctance to commit fully or to avoid the
transformation entirely as everyone around them evolves.

The first pitfall comes from trying to deploy on-premise solutions. They are the most rigid of all
the options and by far the most costly. Physical hardware becomes obsolete in a short time,
causing endless refresh cycles. The hardware will likely fail, causing late-night support issues
that stop businesses cold. Most of the hardware requires expensive support contracts per unit,
and the businesses are at the mercy of the vendors.

The next pitfall is encountered by businesses who choose to use a series of end-to-end
applications. They are forced to use multiple products, some repetitive in nature, getting phone
service with one company, customer call centers with another, and video and conferencing
service from another. Nothing is connected. These application providers are more focused on
the status quo than moving their customers forward. This leads to a loss in productivity and a
lousy customer experience for end-users.

The last common pitfall plagues businesses that try the other option, which is to build something
proprietary. They face a litany of challenges they did not anticipate. There are huge decisions to
make, and most evolve around going well outside their core competencies. This comes with the
burdens of hosting and maintaining complex services and staffing developers with rare and
elusive skill sets. In the end, many businesses scrap the project after wasting years of money
and opportunity costs. The ones who managed to get something working often are too late and
are plagued with maintenance and other distractions.

SignalWire is uniquely qualified to provide businesses with a path to cloud communications that
reduce and eliminate distractions and obstacles while providing access to all of the features that
were previously only available in expensive end-to-end solutions coupled with ever-evolving
advanced features not available from anywhere else.

We see a world where all businesses can set up and own the entire chain of communications to
and from their company, combining traditional phone-number-based communications with
mobile app and web-app-based paradigms. We make that a reality by focusing on solving the
most challenging infrastructure and feature deployment problems and presenting them to
customers as point-and-click options. Integrations with SaaS tools and simple scripting unlock
everything in between.

This vision benefits not only our customers but also our customers' customers. Everyone
universally despises the idea of calling somewhere and dealing with ancient auto-attendants
that hang up on you or send you in circles or being asked for your account number by no less
than five people while still not getting to someone who can help. Instead, powerful AI Agents

can gather information and perform tasks to solve problems and narrow down the number of
calls that end up on hold. Clear lines of communication from corporate websites, phone lines,
and mobile applications can coalesce in one place, be easy to use, easy to extend, and always
on.

SignalWire sets itself apart in the cloud communication landscape by offering highly
customizable solutions, a stark contrast to the rigid packages offered by many. Our innovative
use of advanced technologies, like AI, and an accessible, open-source foundation enable us to
meet diverse business needs more effectively. This approach not only breaks from industry
norms but also addresses the evolving communication challenges faced by businesses today.

At SignalWire, we believe that by making powerful cloud communications tools and features
easily programmable, configurable, and accessible to all businesses without the overhead of
one-size-fits-all solutions, the result will be prosperous innovation and growth for the entire
ecosystem. Programmable Unified Communications unlock a new era of simplicity and
control for everyone.

Solution:

SignalWire Call Fabric is the implementation of Programmable Unified Communications
where users can create and arrange communication pathways on-demand. This encompasses
all the features of an IP PBX, UCaaS, Soft-Switch and makes the features available as
high-level primitives. In programming, a primitive are the building blocks you have to work with
when creating the code. Since we are trying to reduce complexity, the primitives in Call Fabric,
known as Resources, are features deconstructed to the ideal puzzle pieces that can be
arranged in endless combinations. Rather than spending time programming these very, very
complex concepts from the ground up, APIs are just used to create and position resources.

A resource is simply something that can be called. meaning a 1 or 2 way audio/video/text
stream can be established to it.

Initial resources include:

Scripts and markup: (SWML/RELAY/cXML) Create a script or program that can interact and
control the calls by routing, collecting data, invoking digital employees with AI Agents.

Rooms: A room is a multi-user conference where many callers can talk over audio or video.
There are live prieviews of the room and the ability to move around between different rooms.

Subscribers: Registered user accounts for end-users to have a virtual phone line into the
system that can find and call other resources and gateway to the traditional phone network.
These subscribers can register with desk phones, the SignalWire mobile app or custome clients
that can be developed with our SDK.

AI Agents: A digital employee powered by AI that can interact with the caller, transfer calls, and
do actions in the real world.

Callflow Builder: A visual tool to create voice menus, call routes, and applications that can be
deployed instantly and called at scale.

All of These resources can be created and managed from the SignalWire Dash and made
accessible by assigning them a phone number, web address, or SIP address, allowing
unification from all mediums to call and interface with the system.

EXAMPLES

A company can create a subscriber account for each employee, giving them a business phone
number and a web address. A main toll-free number and a web phone on the main website can
be deployed to point to a voice menu designed with the call flow builder that routes calls
between AI Agents and the various employees.

A remote work environment can be added to allow subscribers to meet in various video
conferences, which they can access from a web or mobile app.

A voice assistant can be created that integrates with the middleware of the company, looks up
information, and routes calls to appropriate destinations. This can be traditional or AI-driven,
depending on the complexity of the situation. This opens the door to custom call center
functionality designed in minutes.

History:

We started FreeSWITCH because we wanted to solve our own challenging problems.

We could not find a stable, scalable way to implement our 2004 call center as a service product.
DIY solutions were a collection of random tools with constant stability and maintenance issues.
Premade solutions were massively expensive and still required physical data centers anyway.

We built FreeSWITCH on our vision of how to solve those problems, made a community, and
used it for insight, and it went well beyond the original goal.

FreeSWITCH became so ubiquitous that the world made many vertical products with it that
generate billions of dollars a year.

SignalWire POV:

At SignalWire, we empower businesses with easy-to-use and customizable cloud
communications tools, moving beyond one-size-fits-all solutions to spark innovation and growth.

Telecommunications (technology-assisted human communication) is one of the most important
technologies humankind has ever developed. It has evolved from written messages on paper
carried by messenger to a vast array of devices and mediums, such as telephones and
computers, using audio and video.

Telecommunications have pushed businesses forward with every advancement as long ago as
the telegram. The more information can be easily shared or discussed, the better it is for buyers
and sellers alike. Modern telephone networks and the Internet have pushed this concept even
further. Industries like entertainment, health care, education, and customer service have all
benefited greatly.

Before SignalWire began, our founding team spent the better part of 2005-2015 helping to
innovate the concept of IP Communications at scale with disruptive open-source technology.

Unfortunately, in recent times, there has been a massive slowdown in the evolution of this
technology. Large providers often sacrifice innovation to avoid cannibalizing profits, which leads
to rigidity and suffering for end users. Innovation was stifled, and this short-sightedness caused
a traffic jam ahead of us.

We started SignalWire because we wanted to take our pioneering communications technology
that took decades to develop and present it in a digestible format that allows customers to
deploy exactly what they want, freeing them from the obstacles of time, cost, and resources.

We fundamentally believe in our dedication to removing obstacles and paving the way forward
for each other as well as our customers. That mentality drives everything we do and empowers
us to innovate and grow as a global community.

There is a crisis in the communications industry.

Strategies to execute the transformation to cloud communications infrastructure often present
three significant pitfalls. These can lead to a reluctance to commit fully or to avoid the
transformation entirely as everyone around them evolves.

The first pitfall comes from trying to deploy on-premise solutions. They are the most rigid of all
the options and by far the most costly. Physical hardware becomes obsolete in a short time,
causing endless refresh cycles. The hardware will likely fail, causing late-night support issues
that stop businesses cold. Most of the hardware requires expensive support contracts per unit,
and the businesses are at the mercy of the vendors.

The next pitfall is encountered by businesses who choose to use a series of end-to-end
applications. They are forced to use multiple products, some repetitive in nature, getting phone
service with one company, customer call centers with another, and video and conferencing
service from another. Nothing is connected. These application providers are more focused on
the status quo than moving their customers forward. This leads to a loss in productivity and a
lousy customer experience for end-users.

The last common pitfall plagues businesses that try the other option, which is to build something
proprietary. They face a litany of challenges they did not anticipate. There are huge decisions to
make, and most evolve around going well outside their core competencies. This comes with the
burdens of hosting and maintaining complex services and staffing developers with rare and
elusive skill sets. In the end, many businesses scrap the project after wasting years of money
and opportunity costs. The ones who managed to get something working often are too late and
are plagued with maintenance and other distractions.

SignalWire is uniquely qualified to provide businesses with a path to cloud communications that
reduce and eliminate distractions and obstacles while providing access to all of the features that
were previously only available in expensive end-to-end solutions coupled with ever-evolving
advanced features not available from anywhere else.

We see a world where all businesses can set up and own the entire chain of communications to
and from their company, combining traditional phone-number-based communications with
mobile app and web-app-based paradigms. We make that a reality by focusing on solving the
most challenging infrastructure and feature deployment problems and presenting them to
customers as point-and-click options. Integrations with SaaS tools and simple scripting unlock
everything in between.

This vision benefits not only our customers but also our customers' customers. Everyone
universally despises the idea of calling somewhere and dealing with ancient auto-attendants
that hang up on you or send you in circles, or being asked for your account number by no less
than five people while still not getting to someone who can help. Instead, powerful AI Agents
can gather information and perform tasks to solve problems and narrow down the number of
calls that end up on hold. Clear lines of communication from corporate websites, phone lines,
and mobile applications can coalesce in one place, be easy to use, easy to extend, and always
on.

SignalWire sets itself apart in the cloud communication landscape by offering highly
customizable solutions, a stark contrast to the standard, rigid packages of many providers. Our
innovative use of advanced technologies, like AI, and an accessible, open-source foundation
enable us to meet diverse business needs more effectively. This approach not only breaks from
industry norms but also addresses the evolving communication challenges faced by businesses
today.

At SignalWire, we believe that by making powerful cloud communications tools and features
easily programmable, configurable, and accessible to all businesses without the overhead of
one-size-fits-all solutions, the result will be prosperous innovation and growth for the entire
ecosystem.

The End of CPaaS: Why SignalWire’s
AI-Integrated Call Fabric Redefines
Real-Time Communication

A Technical Blueprint for the Stack Everyone Else is Still
Trying to Build

1. Executive Summary

The telecom and CPaaS landscape has remained stagnant for over a decade, a landscape
plagued by bolt-on APIs, vendor lock-in, and fragmented media handling. As the market rushes
to retrofit AI into traditional voice stacks, latency balloons, complexity surges, and developers
are left struggling to integrate components that were never designed to work together.

SignalWire redefines this reality with a radical new paradigm: Call Fabric, a programmable,
addressable network layer that treats every participant, room, and AI as a first-class, routable
resource. It's a unified, programmable, and composable media infrastructure where AI is
embedded directly into the real-time communication stack. With sub-500ms latency,
seamless support for voice, video, messaging, PSTN, SIP, and WebRTC, and the powerful
declarative scripting language SWML, SignalWire delivers the future of communications today.

Others are still raising capital to build what SignalWire has already deployed globally.

2. The Problem with CPaaS, Vertical AI, and "Real-Time" Infrastructure

2.1 CPaaS is Not Programmable Enough

Traditional CPaaS exposes APIs, but developers are still limited to rigid voice and messaging
workflows, such as predefined IVRs or hardcoded call trees with limited conditional logic.
Customization often requires external logic hosted elsewhere, leading to disjointed experiences.
You can't embed intelligence into the stack, you wrap it around the stack, and the seams always
show.

2.2 Voice AI Is Still a Bolt-On

Platforms like Twilio's Voice AI and Vonage AI Connect stream raw audio through WebSockets
to external LLMs. This adds latency (1.5 to 3 seconds), increases costs, and fractures context
management. These systems cannot maintain fluid, lifelike conversations.

2.3 Channels Are Siloed

SIP, PSTN, WebRTC, video, and messaging are typically handled by distinct services or even
entirely separate vendors. Developers have to stitch together identity, routing, and AI logic
across tools that were never meant to interoperate. This makes omnichannel AI nearly
impossible.

2.4 Fragmentation Adds Latency and Cost

Every additional service adds hops. Each hop adds delay. Developers face escalating costs for
bandwidth, compute, and coordination, while users endure awkward pauses and brittle handoffs
between systems.

3. Introducing SignalWire's Call Fabric

Call Fabric is SignalWire's next-generation programmable communications layer. It treats every
element, media stream, user, AI, room, or script, as a composable, addressable resource.

3.1 Composable Resources

● Subscribers: SIP endpoints, mobile apps, or authenticated user identities
● Rooms: Multiparty audio/video bridges
● SWML Scripts: JSON/YAML logic documents that describe real-time call flows
● AI Agents: Digital employees that interact with users across modalities
● Queues: Intelligent routing and dispatch primitives

3.2 Addressed Like the Web

Every resource has an address (e.g., /support/agent_bot) that can be referenced, dialed,
and interacted with, just like web URLs. This means developers can route calls or messages
between resources using declarative logic, with full AI orchestration in between.

3.3 Execute Across All Channels

SignalWire supports PSTN, SIP, WebRTC, SMS, IP messaging, and video conferencing as
native, first-class channels. Developers can initiate, bridge, and route interactions across any
modality in real time, enabling dynamic workflows that preserve context, memory, and state
across the entire conversation lifecycle, even as the channel changes.

3.4 Real-World Composition

For example, consider an inbound PSTN call answered by an AI Agent. The agent greets the
caller, identifies their intent using natural language processing, queries a business hours API,
and determines whether to route the call immediately or offer voicemail. If escalation is required,
it dynamically places the caller into a Room with an available representative. After the session
ends, the agent sends a personalized summary and follow-up via SMS, all executed seamlessly
within a single, declarative workflow.

4. The AI Voice Stack: Embedded, Composable, and Live

4.1 AI Embedded in the Media Plane

Unlike competitors, SignalWire's AI kernel lives inside the media and signaling stack. This
allows real-time transcription, inference, and synthesis with an average 500ms round-trip
latency. No WebSockets. No proxy servers. No detours.

4.2 Full Runtime with STT, TTS, and LLMs

Speech-to-text, text-to-speech, and natural language reasoning are all tightly coupled, which
ensures faster response cycles, reduced failure points, and more context-aware interactions for
the user. The AI understands the media context, maintains conversation state, and can trigger
functions, route calls, or escalate to humans, all declaratively.

4.3 AI Agents as Resources

Agents can be invoked by address, reused in scripts, transferred into, or even embedded inside
Rooms. You can treat AI like a SIP user, but with intelligence.

4.4 Serverless Tools via SWAIG

SWAIG lets developers define actions the AI can perform using only JSON. These actions can
be templated serverless workflows or proxied HTTP requests with runtime variable expansion.
This makes it trivial to plug AI into CRMs, knowledge bases, payment APIs, and more, with no
glue code.

5. SWML: A Language to Program Communication

5.1 Declarative Control

SWML (SignalWire Markup Language) is a document-based, JSON/YAML-friendly language
designed for real-time control of communication and AI logic.

5.2 One-Liners for Everything

Unset

Want an agent to answer and collect info? One line.

- ai:
 prompt:
 text: "You're a receptionist. Greet the caller and collect
their name and reason for calling."

5.3 Full Flow Programming

With execute, goto, cond, and switch, you can branch flows, collect input, loop, and embed
reusable logic. Unlike low-code IVR builders, SWML scales to real-world, multi-step workflows.

5.4 Post-Call Intelligence

Use post_prompt or post_prompt_url to summarize, log, or escalate sessions. The AI can
convert natural conversation into JSON, ready for back-end systems.

6. LiveKit Reality Check: They're Building What We Already Built

In April 2024, LiveKit raised $22 million to become the programmable media infrastructure for
AI. While their ambitions mirror SignalWire's, their product does not.

LiveKit provides WebRTC infrastructure. It has no SIP, no PSTN, and no AI runtime. According
to their own April 2024 Series B announcement, developers are responsible for stitching
together LLMs, memory systems, and transcription services externally, requiring custom logic,
orchestration middleware, and integration layers for even basic agent interactions.

SignalWire already delivers all of this today.

Capability SignalWire LiveKit

Voice Stack w/ SIP/PSTN ✅ Native ❌ None

AI Kernel in Media ✅ Yes ❌ No

Real-Time STT + TTS ✅ Embedded ❌ External Only

Declarative Call Orchestration ✅ SWML ❌ DIY Glue Code

Composable Telecom Primitives ✅ Rooms, Subs, Queues, AI
Agents

❌ Media Rooms Only

Stage of Product ✅ Deployed ⚡ In Development (Series B)

7. Displacing the CPaaS + AI Stack

Feature SignalWire Twilio Vonage PolyAI Dialogflow LiveKit

AI Built Into Media Stack ✅ ❌ ❌ ❌ ❌ ❌

Fully Addressable Resource Model ✅ ❌ ❌ ❌ ❌ ❌

~ 500ms Round Trip Latency ✅ ❌ ❌ ❌ ❌ ❌

SIP + WebRTC + Video + PSTN ✅ ⚠ ✅ ❌ ❌ ❌

Declarative AI + Call Logic ✅ ❌ ❌ ❌ ⚠ Prompt only ❌

No Glue Code or Middleware ✅ ❌ ❌ ❌ ❌ ❌

8. Developer Experience: One Line to Start, Infinite Depth

SignalWire was designed with the developer in mind, from the first line of SWML to full-scale
applications that can power global call centers. The developer experience is built on three
principles: simplicity, composability, and control.

Getting started with AI-driven communications takes a single line of SWML. Developers can
spin up an AI Agent with a purpose-specific prompt, route a call, and deploy it to a phone
number or SIP endpoint in moments. There’s no infrastructure to manage, no API keys to juggle
across providers, and no need to manually connect speech recognition to a language model.

As needs grow, so does the depth of customization. Developers can integrate
retrieval-augmented generation (RAG) systems to feed the AI live data, add memory to support
stateful interactions, and define tools using SWAIG to allow agents to take meaningful actions
like checking order status, submitting forms, or scheduling appointments. All of this is expressed
declaratively in a single SWML document, with optional external APIs or webhooks for deeper
integration.

Whether routing based on user intent, escalating to human agents, sending SMS follow-ups, or
transcribing calls in real time, developers remain in full control of the experience. SignalWire
removes the burden of orchestration and instead delivers a model where the platform handles
real-time execution, while developers focus on outcomes.

SignalWire doesn’t just simplify development, it elevates it. Developers get a fully
programmable, AI-native comms stack that responds in milliseconds, scales automatically, and
speaks the language of modern software.

9. Performance Engineering at Global Scale

SignalWire's architecture is performance-first, engineered from the ground up to handle
real-time audio, video, and AI processing with near-zero latency. Unlike platforms that pass
media through cloud microservices or stream audio to third-party processors, SignalWire keeps
everything local to its own global edge network. This minimizes round-trip delay and ensures a
seamless, responsive user experience.

The platform is built on FreeSWITCH, the open-source engine trusted by Tier 1 carriers and
VoIP providers worldwide, and has been battle-tested in some of the most demanding telecom
environments on the planet. SignalWire extends FreeSWITCH’s low-level power into a modern
cloud-native fabric, allowing any developer to tap into its capabilities without needing to manage
servers or SIP infrastructure.

AI processing is embedded within the media path. This design eliminates the typical latency
spikes that occur when raw audio is shipped to distant LLMs or transcription services. Instead,
speech-to-text, natural language processing, and synthesis all happen inside the same runtime.
The result: average latencies below 500 milliseconds, even for complex interactions involving
memory and external API calls.

SignalWire’s infrastructure is geographically distributed, automatically routing traffic through the
closest media edge location. This ensures that users across North America, Europe, and Asia
experience consistent performance and quality. The system supports dynamic scaling,
horizontal load distribution, and automatic failover, all essential features for enterprise-grade
deployment.

Security and compliance are also core to the performance model. Audio data is encrypted
end-to-end, sensitive information can be handled outside the AI's memory space, and metadata
can be tokenized to protect user identity while preserving context. Whether it’s for healthcare,
finance, or government, SignalWire is built to meet modern compliance standards without
sacrificing speed.

10. The Strategic Future

SignalWire’s architecture isn’t just solving today’s telecom problems, it’s laying the foundation
for a new era of programmable communication. In this new model, every conversation is
orchestrated dynamically in real time, with media, memory, logic, and modality all managed
within a single, coherent system. As more organizations realize the limitations of retrofitting
legacy systems with AI, the shift toward native, embedded intelligence will accelerate.
SignalWire is already leading that transition with infrastructure built for scale, security, and
real-time action.

The concept of Call Fabric mirrors the early internet, where every resource is addressable,
composable, and built to interoperate. Just as URLs transformed how we access content,
SignalWire’s resource model allows communication endpoints, AI Agents, Rooms, Subscribers,
to act like building blocks for new applications. This architecture positions SignalWire not just as
a telecom company, but as the communications layer of the modern internet.

In the coming years, we will see AI Agents evolve from assistants to collaborators. They won’t
just answer questions, they’ll complete tasks, escalate conversations intelligently, and learn over
time. SignalWire enables this by making AI a first-class citizen of the media stack, not an
external service tacked on with middleware and latency.

As digital identity becomes more portable and interaction channels multiply, SignalWire’s
composable infrastructure ensures continuity across modalities. A conversation that starts on
the phone can shift to video, then to messaging, with context and state preserved. This fluid,
multimodal approach unlocks entirely new forms of customer experience, support, and
automation.

The future of communications isn’t a product, it’s a platform. And SignalWire’s Call Fabric is
already powering it.

11. Conclusion

The communications industry is standing at a pivotal inflection point. Legacy CPaaS vendors
and next-gen media startups alike are racing to stitch AI into telecom, but they're burdened by
outdated paradigms, fragmented tooling, and an architectural gap between conversation and
action.

SignalWire changes that. It doesn’t offer another API, chatbot, or voice add-on. Instead, it
delivers a platform where AI, media, logic, and infrastructure are one and the same. Call Fabric
unifies programmable communication across voice, video, and messaging, while embedding
real-time AI agents into the stack itself. The result: faster development, natural conversations,
and an execution model that scales.

While others define roadmaps and raise rounds to catch up, SignalWire is already there. Live in
production. Deployed globally. Built by the same minds who revolutionized telecom with
FreeSWITCH, now doing it again with programmable AI.

The shift is no longer coming. It's here, and it's composable, real-time, and built on SignalWire.

Appendices

A. Full AI Agent SWML Example
B. LiveKit PR & Competitive Notes
C. Benchmarks: Latency, Call Setup, Bandwidth
D. Call Fabric Resource Diagram
E. Glossary: PUC, SWAIG, SWML, etc.

SignalWire AI Gateway (SWAIG) and How it Compares to
MCP

Introduction

The emergence of the Model Context Protocol (MCP) has sparked excitement across the AI and
developer ecosystems. Positioned as a forward-looking standard for enabling large language
models (LLMs) to securely access external tools, data, and context, MCP proposes a structured,
extensible framework that emphasizes modularity, consent, and safety. It introduces concepts
like resources, tools, and prompts, bound together by role-based interactions that could allow AI
assistants to perform meaningful actions.

But while MCP defines an ambitious blueprint, SignalWire has already built and operationalized
this vision. SWAIG, the SignalWire AI Gateway, is a mature, production-grade protocol and
runtime system powering real-world AI agents across telecom channels at scale. From
programmable voice workflows to real-time messaging orchestration, SWAIG is not just a
concept. It is the infrastructure behind live applications.

This blog explores why SWAIG stands as the realized model of an AI Gateway, showcasing
practical features, declarative simplicity, and battle-tested execution environments that MCP has
yet to reach. MCP paints a compelling vision of how AI integrations might work; SWAIG
demonstrates how they already do: cleanly, scalably, and securely.

The Core Philosophy

Both SWAIG and MCP share a foundational goal: to move AI beyond passive response
generation and toward safe, structured interaction with the world. An AI Gateway Protocol must
allow LLMs to execute actions with contextual awareness and operational control.

MCP introduces this through a layered, declarative model composed of resources (data), tools
(functions), and prompts (task templates). It separates system roles-Host, Client, Server-and
suggests negotiation mechanisms for capability discovery and permission granting. The
framework promotes modularity and abstraction, and in theory, it supports general-purpose AI
integrations.

However, in practice, MCP remains early-stage. Public specifications exist, and reference SDKs
are emerging, but its deployment is largely confined to IDE assistants and localized
environments. Despite claims of vendor neutrality, most implementations remain experimental or
non-secure (e.g., Cursor, Sourcegraph, Windsurf). There is no clear path to secure, real-time
operational deployment in production-grade applications.

Unset

SWAIG, by contrast, is fully implemented and running live across SignalWire’s programmable
voice and messaging infrastructure. It is not a toolkit for building an integration stack. It is the
integration stack. SWAIG defines executable functions, validates arguments, manages consent
and scope, and routes real-time media-all through a declarative interface embedded in
SignalWire’s agent markup language, SWML.

Rather than conceptual roles, SWAIG delivers operational behavior. Its functions can be
serverless (templated calls to APIs) or routed to HTTP services, and they are invoked directly in
conversation flows without glue code or orchestration layers. The agent understands how and
when to call them, what to do with the results, and how to proceed in the interaction.

Design and Simplicity

MCP emphasizes a flexible, modular architecture. However, its design requires considerable
scaffolding: multiple abstract layers (resources, tools, prompts, metadata, context), permission
negotiation, and external orchestration for runtime behavior. This creates overhead and friction
for developers trying to build production agents.

SWAIG simplifies this by doing less. Its primitives are compact and expressive: function,
parameters, data_map, output, and action. These map directly to behavior and require no
separate discovery mechanism or orchestration layer. One YAML or JSON block defines the
interface, validation, conversational response, and downstream actions.

Example: Serverless Function with Data Map

- function: get_weather
 purpose: Get the current weather based on the user's location
 argument:
 type: object
 properties:
 location:
 type: string
 description: The name of the city or zip code
 data_map:
 expressions:
 - pattern: ".*"
 string: "${args.location}"
 output:
 response: "Weather data retrieved."

Unset

Unset

 action:
 - SWML:
 version: "1.0.0"
 sections:
 main:
 - send_sms:
 to_number: "+15554441234"
 region: "us"
 body: "Here's the weather for ${args.location}"
 from_number: "+15554441234"

Example: Hosted Function with Webhook

- function: get_weather
 description: To determine the current weather for a given
location.
 parameters:
 type: object
 properties:
 location:
 type: string
 description: The location to check
 fillers:
 en-US:
 - "Checking the weather for you."
 web_hook_url:
https://api_key:secret_token@your-swaig-server.com/get_weather

Expected server response:

{
 "response": "It’s currently 72°F with clear skies in Austin,
Texas.",

 "action": {
 "set_meta_data": {
 "last_checked_location": "Austin"
 }
 }
}

In this model:

● response shapes the next AI turn
● action defines operational behavior (e.g., say, transfer, metadata)

No external discovery. No runtime glue. All validated and run in context.

Integration in the Real World

MCP’s primary integrations today are with IDE copilots and developer tools. These
environments are constrained, localized, and generally asynchronous. They are valuable but
limited in operational scope.

SWAIG is deployed in live telecom flows: PSTN, SIP, WebRTC, and SMS. A SWAIG agent can
receive a phone call, parse speech via STT, call a serverless function, respond via TTS, and
take action-all within a single call session. It runs real-time, across channels, with no
intermediary orchestration.

Real-World Example: Appointment Scheduler

● Define get_availability as a hosted or serverless SWAIG function
● Ask the user for a time
● Use data_map to query the booking API
● Let user pick a time
● Use send_sms to confirm

No backend logic is required beyond the API call. No IVR scripting. No third-party orchestration.

SWAIG is already in use for:

● Voice bots answering questions and routing leads
● SMS agents scheduling appointments or collecting preferences

● Cross-channel assistants combining messaging, voice, and data
● Real-time agents integrated with CRMs and operational backends

Security and Operational Trust

MCP focuses on user-centric permission and abstraction but does not define how runtime
environments should enforce execution constraints. This leaves security as an implementation
detail-flexible, but inconsistent and risky in operational settings.

SWAIG functions operate within a tightly controlled execution model:

● JSON Schema defines argument validation
● Only a fixed set of actions are permitted
● All functions execute within a call/session context
● Timeout, barge-in, and state transitions are managed by the platform
● Transitions and actions are logged and auditable

This yields a deterministic, traceable behavior model where AI actions are predictable and safe.

Examples of allowed actions:

● say or response: conversational output
● SWML: telephony instructions (transfer, hold, record)
● set_meta_data, toggle_functions, stop, etc.

The result is a structured, declarative, and secure environment for AI operations-critical in
regulated industries or sensitive applications.

Scalability and Deployment

MCP aspires to be language-agnostic and modular. However, it lacks a shared runtime, unified
execution model, or deployment guidance. Today, it runs mostly in browser tools or developer
IDEs without scale benchmarks or secure endpoint integration.

SWAIG is already deployed across SignalWire’s telecom-grade infrastructure. It inherits
FreeSWITCH’s performance and reliability, and has been used in thousands of concurrent voice
sessions.

Teams can:

● Start serverless (API-only functions)
● Deploy hosted SWAIG servers (Heroku, Fly.io, AWS)

● Mix real-time calls, SMS, and backend logic
● Reuse functions across multiple agents
● Scale incrementally and predictably

This composability allows fast iteration without compromising structure or safety.

Built-in Tool Hosting and Discovery

A unique feature of SWAIG is its ability to dynamically fetch tools from external sources via
HTTP POST. Developers can:

● Host SWAIG-compatible tools on their own server
● Expose functions via authenticated POST endpoints
● Register tool URLs in SWML agents declaratively
● Enable auto-discovery with explicit permission control

This is conceptually similar to MCP’s vision of tool discovery, but significantly simpler. No
negotiation protocol, no capability graph. Just set the endpoint, define the schema, and let the
agent invoke it.

It is declarative, scalable, and secure-without overengineering.

How MCP Could Learn from SWAIG

MCP’s structure is thoughtful, but early implementations lack the constraints and integration
patterns required for production readiness. It could evolve faster by adopting elements from
SWAIG:

1. Data-first execution models
○ Instead of resource abstractions, SWAIG uses data_map blocks to bind inputs to

live data.
2. Declarative action flows

○ SWAIG returns typed, structured action blocks that eliminate ambiguity.
3. Lifecycle integration

○ SWAIG functions execute within voice/messaging sessions and manage state
transitions.

4. Unified format
○ SWAIG functions behave the same whether serverless or hosted-minimizing

mental overhead.

MCP’s principles are solid, but operational grounding is what transforms protocols into
platforms. SWAIG illustrates that real-world design requires execution, not just abstraction.

Operational Milestones

SWAIG has been running in production since early 2023, integrated directly into SignalWire’s
global telecom infrastructure. It has handled Thousands of concurrent real-time voice sessions.

This operational maturity is not speculative. It reflects learnings and refinements from live
deployments in regulated, customer-facing environments.

Conclusion

MCP is a promising attempt to define the future of LLM-driven tools. It is modular, extensible,
and aligned with privacy-first principles. But while it proposes how AI Gateways might work,
SWAIG proves how they already do work, today.

SWAIG is declarative, enforceable, composable, and live in production. It eliminates
unnecessary complexity, runs directly in the SignalWire platform, and powers real-time voice
and messaging AI agents.

It is not a concept. It is a framework. It closes the loop between intent and action, between
specification and behavior, between architecture and execution.

For organizations looking to operationalize AI agents today, not in theory, SWAIG provides the
shortest path from design to deployment. It is the blueprint for operational AI agents. And it is
already live.

Examples and More Information

To explore SWAIG and SWML in practice, see the following live resources:

● SignalWire AI Platform
● AI Workshop Examples by @briankwest
● SignalWire Digital Employees Reference
● Official SWML AI Guides and Documentation

https://signalwire.ai
https://github.com/briankwest/aiworkshop
https://github.com/signalwire/digital_employees
https://developer.signalwire.com/swml/guides/ai

Bitter Lessons in AI and Communication

Learning from Practical Applications

Key Lesson: Systems must adapt to real-world use cases and performance requirements
rather than theoretical idealizations.

SignalWire's Alignment:

● SignalWire's Call Fabric (a horizontal implementation of Programmable Unified
Communications, or PUC) emphasizes flexibility and real-world scalability by breaking
down complex communication systems into modular resources.

● The use of SWML (SignalWire Markup Language) allows rapid deployment of dynamic
communication solutions tailored to real-world needs, such as AI-powered IVRs and
seamless call routing.

Optimization of Latency and Efficiency

Key Lesson: High-performance systems require a deep understanding of the full technology
stack.

SignalWire's Strength:

● Unlike many platforms that rely on third-party CPaaS for media handling, SignalWire
integrates the media stack and CPaaS capabilities, reducing latency by eliminating
intermediate layers.

● Innovations like real-time transcription, vector-based AI integration, and highly optimized
orchestration ensure low latency, making SignalWire a leader in efficient communication
systems.

Avoiding Narrow Vertical Solutions

Key Lesson: General-purpose solutions often outperform narrowly focused vertical products.

SignalWire's Differentiation:

● By offering developer-friendly APIs and support for diverse applications like video
conferencing, telehealth, and real-time customer support, SignalWire provides a
general-purpose, horizontally scalable platform.

● Competing solutions often lock users into specific use cases (e.g., Twilio’s less-flexible
voice AI), whereas SignalWire enables full programmability and customization across
industries.

Focus on Developer Enablement

Key Lesson: Empower developers with tools that abstract complexity while offering depth.

SignalWire's Implementation:

● The SWAIG (SignalWire AI Gateway) integrates powerful AI tools like OpenAI’s GPT
models into a framework that enables developers to build advanced digital employees
with minimal effort.

● SignalWire offers low-code/no-code options, making communication technology
accessible without compromising on power.

Integration Over Isolation

Key Lesson: Successful systems interact seamlessly with existing tools and platforms.

SignalWire's Value:

● SignalWire’s platform is built around open standards like SIP, WebRTC, and REST APIs,
ensuring easy integration with legacy systems and modern cloud solutions.

● Unlike competitors, SignalWire’s PUC approach avoids vendor lock-in, supporting hybrid
and multi-cloud architectures.

Adaptability and Future-Proofing

Key Lesson: Systems must be able to evolve alongside technological and market shifts.

SignalWire’s Approach:

● The modular design of SignalWire’s Call Fabric enables continuous updates and
expansions without major overhauls.

● Features like dynamic context switching and real-time resource allocation allow for
ongoing adaptation to user demands and evolving AI capabilities.

Cost and Accessibility

Key Lesson: Democratizing access to technology is as important as the technology itself.

SignalWire’s Achievement:

● By significantly lowering entry barriers through straightforward pricing and out-of-the-box
interoperability, SignalWire reduces both time-to-value and operational costs.

● Unlike traditional CPaaS solutions that incur high integration overheads, SignalWire
empowers businesses of all sizes to leverage cutting-edge communication tools.

Conclusion

SignalWire exemplifies many principles from the "bitter lessons" of AI by focusing on modularity,
developer empowerment, scalability, and adaptability. Its comprehensive PUC platform
transcends the limitations of traditional CPaaS and UCaaS, providing an unparalleled blend of
real-time performance, customization, and seamless integration.

For more information, visit SignalWire to explore how it aligns with these transformative
principles.

SignalWire is a telco-grade, AI Voice Platform for
building the next decade of communication systems.
SignalWire helps developers and businesses succeed
by simplifying Communication technology into a
future-proof solution that enables them to quickly
build scalable, innovative solutions that empower
their customers to thrive.

Three Critical Inflection Points in Technology

Browsers emerge, HTML becomes
the universal interface
Impact: Read-only internet - the
birth of online content + websites
become the first layer of digital
presence

Inflection Point 1
1989 World Wide Web

Inflection Point 2
2006 The Cloud
Launch of EC2 and S3, API driven
compute
Impact: The cloud-native revolution
begins

Inflection Point 3
2022 AI
Foundation models and real-time
inference become accessible
API-first platforms shift from commands to
conversations
Impact: The internet becomes intelligent

Telecom locked inside
on-prem infrastructure

2006: FreeSWITCH is born - giving
voice to the programmable
internet.
Impact: Becomes the number one
open-source telephony platform
that revolutionized the VoIP
industry. Powers 95% cloud
communications industries:

CPaaS
UCaaS Powered by FreeSWITCH
CCaaS

SignalWire’s PUC Platform is to
Communication what EC2 was to
Compute and what LLMs are to
Understanding
Impact: PUC is the missing layer
that lets Humans and AI interact
via comms channels in real time.

2018: SignalWire is formed to take
FreeSWITCH into the cloud.
Modular, protocol-agnostic telecom
core built for developers
Bridges SIP, PSTN, WebRTC, and more
under one engine
The foundation for Programmable
Unified Communications (PUC)
Impact: Real-time communications
become programmable, composable,
and embeddable

The Biggest Inflection Point is Here - NOW

The convergence of several events are forcing the first re-engineering of
global voice platforms in 15+ years

● Genesys, Metaswitch, and legacy on-prem are being phased out
● AI is transforming contact centers and workflows
● Developer adoption is the new distribution
● The developer platform that enables this shift will own the next decade

 was architected for this shift from its inception.
We have the infrastructure, AI orchestration, and protocol stack
live today - at scale

The Legacy Stack is Breaking

AI is now central to customer interaction, but the legacy
communications stacks were not built for it
Today’s systems are:

● Latency-prone and stitched together non-defensible AI use-cases with multiple API

● Designed for rigid use cases of low quality audio and rudimentary call routing to humans only

● Inflexible across all protocols, both legacy and modern (SIP, PSTN, WebRTC, and Mobile)

● Impossible for developers to extend to modern ideas and product requirements

Current Solutions are Limited

Company Limitation

Twilio (CPaaS) Gen 1 CPaaST - Not built for real-time AI workflows. Requires multiple third-party integrations for
advanced routing, NLP, etc. Cannot innovate on the already ancient voice stack.

LiveKit
(AI)

New in Town - No programmable telecom stack. Needs years to accelerate

Replicant
(AI IVR)

Closed IVR System - Not a developer platform or infrastructure layer, making the solution rigid

Genesys/MetaSwitch
(CCaaS)

Legacy CCaaS - Complex and expensive solution, not programmable. EOL on-prem causing a
mass exodus to the cloud.

: What Makes Us Unique?
➔ Composable Infrastructure Approach

◆ Translates between mobile/browser world and
traditional telecom. Global scale with intelligent
routing network

➔ Deep Programmability
◆ Built by the creators of FreeSWITCH; developers

gain direct, low-latency control over media and
call flows

➔ Native AI Integration
◆ Real-time transcription, translation, and

programmable Digital Employees all baked into the
platform (no third-party “bolt-ons”)

➔ Flexible, Usage-Based Model
◆ Scales affordably without enterprise-level license

fees. Ideal for everything from startups to
large-scale call centers

➔ Developer-Centric Ecosystem
◆ Integrates easily with CRMs, ERPs, LLMs and other

AI services, and more

AI
C

Creating something entirely new:
Programmable Unified Communications

Join a Video Call with AI

https://ai.signalwire.com/#

: Use Case One

©SignalWire | Do not Distribute Without Company Permission

SignalWire’s Programmable Unified Communications (PUC) approach abstracts telecom primitives into composable
Resources (like AI Agents, Subscribers, Scripts, Rooms, Gateways), which can be mixed and matched to create dynamic,
scalable communication systems. Applications can be up and running in weeks rather than years.

Secure, Compliant Healthcare Appointments (HIPAA)

Goal: Let patients schedule, confirm, or cancel appointments via voice

Resources Used:
● AI Agent: For appointment interaction
● Room: For escalated video calls with doctors
● Subscriber: For back-office agents or nurse line
● SWML Script: For call routing and compliance logic
● SWAIG: For integration with EMRs and scheduling systems

Flow:
1. Patient calls a number tied to a SWML script

2. An AI Agent confirms their identity and retrieves availability via SWAIG
3. They confirm or change appointments
4. If escalation is needed, patient is transferred to a Room or Subscriber

✅ Sensitive information is kept secret for PCI and HIPAA compliance

©SignalWire | Do not Distribute Without Company Permission

Virtual Receptionist for Distributed Teams

Goal: Build a smart receptionist that can handle distributed, hybrid staff across the globe.

Resources Used:

● AI Agent: Natural conversation + name/intent capture
● Subscribers: Remote employees with SIP/WebRTC endpoints
● Queue: If staff is unavailable
● Script: Core logic
● SendSMS: To notify team members of missed calls

Flow:

1. Caller is greeted by the AI agent
2. AI asks “Who are you trying to reach?” or “How can I help you?”
3. Based on user intent, routes to the correct Subscriber (e.g., marketing, sales).
4. If person is away, the call goes to Voicemail, then sends an SMS/email.

: Use Case Two

: Platform Overview - SignalWire is the programmable fabric that
connects real-time AI, SIP, PSTN, WebRTC, Mobile, SMS, and Video.

Real-Time Infrastructure

A highly available, distributed, and
reliable cloud-based communication
infrastructure that breaks down key
application features into development
building blocks.

AI Kernel Embedded in the Media
Stack

Voice, transcription, memory, and LLM
reasoning run inside the media layer. No
detours

Model-Aware Agent Infrastructure
SignalWire’s production-ready
equivalent of MCP (Model Context
Protocol) is called SWAIG. It securely
defines agent goals, memory, tools, and
behavior in a stable format that has been
in use for over a year.

Omnichannel by Design

Unified platform across PSTN, SIP,
WebRTC, SMS, Video, and AI natively
built into the stack.

Subscribers

Managed user identities that enable
programming of PBX and Call Center
features, including roles and call
routing, to build integrated customer
experiences.

Declarative Call Logic

Developers build conversational
applications using structured prompts
and JSON logic, rather than wiring APIs
and sockets by hand.

©SignalWire | Do not Distribute Without Company Permission

Nodes placed worldwide to
ensure high availability, low
latency, and scalable
communication infrastructure.

Tailored solutions for specific
business needs such as data
sovereignty requirements,
serving clients like Sprinklr,
Deutsche Telekom, and large
call centers.

Cloud agnostic architecture
allows deployments to any
data center or network.

©SignalWire | Do not Distribute Without Company Permission

,PCI

© SignalWire | Do Not Distribute Without Company Permissions

: A Complete set of Services

AI Agent - Campaign Registry - 2FA - WebRTC Client

SWML Relay cXML REST

Voice - Messaging - Video - SIP - Numbers - Accounts

Geo-
routing

DNS
Failover

Intelligent Routing Layer
Region
locking

Private
SBCs

Security and Residency

48 Worldwide POPs

2 SignalWire
DCs AWS GCP DO

Global SBC Mesh

Media
Servers

App
Servers Database Logging

and Billing

Solutions

APIs

Channels

Resiliency

Infrastructure

: Go-to-Market

Customer focused platform designed for Product Led Growth
(PLG), including self-service and POC acceleration

Customer Support and Customer Success increases
consumption and retention. 2024 net retention 130%

Revenue Streams: SignalWire generates revenue from various
sources including consumption-based fees, monthly
subscriptions, dedicated infrastructure, and professional
services for platform integration. 96% revenue is recurring

Strategic Partnerships with Enterprise and telcos to integrate
with SignalWire’s powerful Programmable Unified
Communications (PUC) platform, future-proofing their
offering

Product Led Growth partnering with
Sales Led Growth

Focus on industries with heavy customer
engagement needs, companies with
technical ability, and development
resources.

Product Led

SMB customers
Free Trials
Community
Support
Success

Sales Led

Larger Customers
Complex Use Cases
Small Sales Team
Solutions Architects

Paying
Customers

In Product Upsell,
Expansion Rev.

Enterprise

: What Makes Us Unique?

©SignalWire | Do not Distribute Without Company Permission

● Everything is a composable resource: Use APIs to create. APIs to control. SDKs and phone
numbers to place and receive calls.

● Real-time programmable logic: Using SWML, you can orchestrate everything at runtime.

● Cross-channel support: Works with PSTN, SIP, WebRTC, and messaging - with consistent
logic.

● Global scale + edge routing: Deploy anywhere, route intelligently.

● AI-native: AI Agents aren’t bolted-on - they’re part of the core. They can see, be seen, hear,
speak and control calls based on simple instructions and integration points using SWAIG (our
product ready MCP equivalent)

Join a Video Call with AI

https://ai.signalwire.com/#

	5 Pitfalls to Avoid When Building Advanced Voice AI Systems
	Understanding the voice AI landscape in 2025
	Pitfall #1: The "it seems simple" trap
	Solution: The integrated approach

	Pitfall #2: The proof of concept wall
	Solution: Build for real-world resilience

	Pitfall #3: The multi-channel integration labyrinth
	Solution: Channel-agnostic AI architecture

	Pitfall #4: The tool use conundrum
	Solution: Native tool integration framework

	Pitfall #5: The compliance riddle
	Solution: Security-first architecture

	Building future-proof voice AI

	AI Inside the Stack: Why SignalWire’s Embedded Approach Is the Future of Real-Time Communication
	How SignalWire Redefined Voice AI by Making It Native, Composable, and Instantly Deployable
	1. Executive Summary
	2. The Problem: Legacy Models Can’t Keep Up
	3. SignalWire’s AI Kernel
	4. From Prompt to Production in One File
	5. Developer Velocity: From Months to Weeks
	6. Why Everyone Else Is Behind
	7. The Strategic Future of AI in Telecom
	8. Conclusion: The Stack is the Strategy
	Appendices

	SignalWire AI Telecom Agent Market Context
	High-Level Summary
	Core Market Challenges:
	Key Requirements:

	Competitive Landscape
	SignalWire’s Advantage
	Biggest Challenges in AI + Telecom
	1. Maintaining Ultra-Low Latency
	2. Avoiding LLM Hallucinations
	3. Managing Context & State
	4. Third-Party System Integration
	5. Omnichannel AI Across PSTN, SIP, WebRTC, and Messaging

	SignalWire’s Solution
	Conclusion

	Marketing Copy for Developers – SignalWire’s Low-Latency, Low-Bandwidth AI Communication Platform
	Efficient, Scalable, and Seamless: How SignalWire Optimizes AI Communication for Developers
	1. Introduction: The Challenges of Applied AI Communication
	The Problem:
	Context:
	Problem Statement:

	2. SignalWire’s Solutions: Cutting Costs and Latency While Improving Performance
	Sub-500ms Latency
	Internalized Raw Audio Handling
	Reduced Bandwidth Costs
	Unified Media and AI Workflows
	Real-Time Orchestration and Scalability
	Data Security and Compliance

	3. Why Developers Choose SignalWire
	Low Latency, High Performance
	Cost-Effective Operation
	Native AI and Media Integration
	Global Communication Platform
	Developer-Friendly APIs

	4. SignalWire’s AI Integration with Communication Systems
	AI in Voice Communication Use Cases

	Conclusion

	Features Available in SignalWire but Not in FreeSWITCH
	Fundamental Differences Between SignalWire and FreeSWITCH
	1. Abstraction vs. Granularity
	2. Modularity and Composability
	3. Scalability
	4. AI Integration
	5. Developer Enablement
	6. Unified Platform
	7. Time to Market
	8. Integration

	Model Context Protocol: Evolving to Work Together with Real-Time Media Plumbing
	Introduction
	Evaluating the MCP Specification
	Limitations of MCP’s Current Transport Approach
	Real-World Lessons from SIP, RTP, WebRTC, and High-Volume Call Control

	Recommendations for Transport Enhancements
	Future Compatibility with SignalWire’s Infrastructure
	Conclusion

	Salesforce Q&A - SignalWire Overview
	Describe the origins of SignalWire and your view on your competitive position
	Describe how FreeSWITCH and SignalWire interact; do open-source developers convert to paid SignalWire customers?
	Describe how customers are using your products and key customer use cases
	When a developer builds an AI agent or call flow using SignalWire, do they still need a traditional CCaaS, UCaaS, or CPaaS solution?
	Where does SignalWire fit in a CCaaS/UCaaS solution stack?
	How do your products integrate with systems of record such as Salesforce?
	Product Portfolio: AI Agents, SWML, APIs, Call Flow Builder, etc.
	Describe the voice applications that can be built on SignalWire

	The End of CPaaS: Why SignalWire’s AI-Integrated Call Fabric Redefines Real-Time Communication
	A Technical Blueprint for the Stack Everyone Else is Still Trying to Build
	1. Executive Summary
	2. The Problem with CPaaS, Vertical AI, and "Real-Time" Infrastructure
	2.1 CPaaS is Not Programmable Enough
	2.2 Voice AI Is Still a Bolt-On
	2.3 Channels Are Siloed
	2.4 Fragmentation Adds Latency and Cost

	3. Introducing SignalWire's Call Fabric
	3.1 Composable Resources
	3.2 Addressed Like the Web
	3.3 Execute Across All Channels
	3.4 Real-World Composition

	4. The AI Voice Stack: Embedded, Composable, and Live
	4.1 AI Embedded in the Media Plane
	4.2 Full Runtime with STT, TTS, and LLMs
	4.3 AI Agents as Resources
	4.4 Serverless Tools via SWAIG

	5. SWML: A Language to Program Communication
	5.1 Declarative Control
	5.2 One-Liners for Everything
	5.3 Full Flow Programming
	5.4 Post-Call Intelligence

	6. LiveKit Reality Check: They're Building What We Already Built
	7. Displacing the CPaaS + AI Stack
	8. Developer Experience: One Line to Start, Infinite Depth
	9. Performance Engineering at Global Scale
	10. The Strategic Future
	11. Conclusion
	Appendices

	SignalWire AI Gateway (SWAIG) and How it Compares to MCP
	Introduction
	The Core Philosophy
	Design and Simplicity
	Example: Serverless Function with Data Map
	Example: Hosted Function with Webhook

	Integration in the Real World
	Real-World Example: Appointment Scheduler

	Security and Operational Trust
	Scalability and Deployment
	Built-in Tool Hosting and Discovery
	How MCP Could Learn from SWAIG
	Operational Milestones
	Conclusion
	Examples and More Information

	Bitter Lessons in AI and Communication
	Learning from Practical Applications
	Optimization of Latency and Efficiency
	Avoiding Narrow Vertical Solutions
	Focus on Developer Enablement
	Integration Over Isolation
	Adaptability and Future-Proofing
	Cost and Accessibility
	Conclusion

