SignalWire Al Gateway (SWAIG) and How it Compares to
MCP

Introduction

The emergence of the Model Context Protocol (MCP) has sparked excitement across the Al and
developer ecosystems. Positioned as a forward-looking standard for enabling large language
models (LLMs) to securely access external tools, data, and context, MCP proposes a structured,
extensible framework that emphasizes modularity, consent, and safety. It introduces concepts
like resources, tools, and prompts, bound together by role-based interactions that could allow Al
assistants to perform meaningful actions.

But while MCP defines an ambitious blueprint, SignalWire has already built and operationalized
this vision. SWAIG, the SignalWire Al Gateway, is a mature, production-grade protocol and
runtime system powering real-world Al agents across telecom channels at scale. From
programmable voice workflows to real-time messaging orchestration, SWAIG is not just a
concept. It is the infrastructure behind live applications.

This blog explores why SWAIG stands as the realized model of an Al Gateway, showcasing
practical features, declarative simplicity, and battle-tested execution environments that MCP has
yet to reach. MCP paints a compelling vision of how Al integrations might work; SWAIG
demonstrates how they already do: cleanly, scalably, and securely.

The Core Philosophy

Both SWAIG and MCP share a foundational goal: to move Al beyond passive response
generation and toward safe, structured interaction with the world. An Al Gateway Protocol must
allow LLMs to execute actions with contextual awareness and operational control.

MCP introduces this through a layered, declarative model composed of resources (data), tools
(functions), and prompts (task templates). It separates system roles-Host, Client, Server-and
suggests negotiation mechanisms for capability discovery and permission granting. The
framework promotes modularity and abstraction, and in theory, it supports general-purpose Al
integrations.

However, in practice, MCP remains early-stage. Public specifications exist, and reference SDKs
are emerging, but its deployment is largely confined to IDE assistants and localized
environments. Despite claims of vendor neutrality, most implementations remain experimental or
non-secure (e.g., Cursor, Sourcegraph, Windsurf). There is no clear path to secure, real-time
operational deployment in production-grade applications.



SWAIG, by contrast, is fully implemented and running live across SignalWire’s programmable
voice and messaging infrastructure. It is not a toolkit for building an integration stack. It is the
integration stack. SWAIG defines executable functions, validates arguments, manages consent
and scope, and routes real-time media-all through a declarative interface embedded in
SignalWire’s agent markup language, SWML.

Rather than conceptual roles, SWAIG delivers operational behavior. Its functions can be
serverless (templated calls to APIs) or routed to HTTP services, and they are invoked directly in
conversation flows without glue code or orchestration layers. The agent understands how and
when to call them, what to do with the results, and how to proceed in the interaction.

Design and Simplicity

MCP emphasizes a flexible, modular architecture. However, its design requires considerable
scaffolding: multiple abstract layers (resources, tools, prompts, metadata, context), permission
negotiation, and external orchestration for runtime behavior. This creates overhead and friction
for developers trying to build production agents.

SWAIG simplifies this by doing less. Its primitives are compact and expressive: function,
parameters, data_map, output, and action. These map directly to behavior and require no

separate discovery mechanism or orchestration layer. One YAML or JSON block defines the
interface, validation, conversational response, and downstream actions.

Example: Serverless Function with Data Map

Unset
- function: get_weather
purpose: Get the current weather based on the user's location
argument:
type: object
properties:
location:
type: string
description: The name of the city or zip code

data_map:
expressions:
- pattern: ".*"
string: "S{args.location}"
output:

response: "Weather data retrieved."



action:
- SWML:
version: "1.0.0"
sections:
main:
- send_sms:

to_number: "+15554441234"
region: "us"
body: "Here's the weather for ${args.location}"
from_number: "+15554441234"

Example: Hosted Function with Webhook

Unset
- function: get_weather
description: To determine the current weather for a given
location.
parameters:
type: object
properties:
location:
type: string
description: The location to check
fillers:
en-US:
- "Checking the weather for you."
web_hook_url:
https://api_key:secret_token@your-swaig-server.com/get_weather

Expected server response:

Unset

{

"response"”: "It’'s currently 72°F with clear skies in Austin,
Texas.",



"action": {
"set_meta_data": {
"last_checked_location": "Austin"

In this model:

e response shapes the next Al turn
e action defines operational behavior (e.g., say, transfer, metadata)

No external discovery. No runtime glue. All validated and run in context.

Integration in the Real World

MCP’s primary integrations today are with IDE copilots and developer tools. These
environments are constrained, localized, and generally asynchronous. They are valuable but
limited in operational scope.

SWAIG is deployed in live telecom flows: PSTN, SIP, WebRTC, and SMS. A SWAIG agent can
receive a phone call, parse speech via STT, call a serverless function, respond via TTS, and
take action-all within a single call session. It runs real-time, across channels, with no
intermediary orchestration.

Real-World Example: Appointment Scheduler

Define get_availability as a hosted or serverless SWAIG function
Ask the user for a time

Use data_map to query the booking API

Let user pick a time

Use send_sms to confirm

No backend logic is required beyond the API call. No IVR scripting. No third-party orchestration.
SWAIG is already in use for:

e \oice bots answering questions and routing leads
e SMS agents scheduling appointments or collecting preferences



e Cross-channel assistants combining messaging, voice, and data
e Real-time agents integrated with CRMs and operational backends

Security and Operational Trust

MCP focuses on user-centric permission and abstraction but does not define how runtime
environments should enforce execution constraints. This leaves security as an implementation
detail-flexible, but inconsistent and risky in operational settings.

SWAIG functions operate within a tightly controlled execution model:

JSON Schema defines argument validation

Only a fixed set of actions are permitted

All functions execute within a call/session context

Timeout, barge-in, and state transitions are managed by the platform
Transitions and actions are logged and auditable

This yields a deterministic, traceable behavior model where Al actions are predictable and safe.
Examples of allowed actions:

e say or response: conversational output
e SWML: telephony instructions (transfer, hold, record)
e set_meta_data, toggle_functions, stop, etc.

The result is a structured, declarative, and secure environment for Al operations-critical in
regulated industries or sensitive applications.

Scalability and Deployment

MCP aspires to be language-agnostic and modular. However, it lacks a shared runtime, unified
execution model, or deployment guidance. Today, it runs mostly in browser tools or developer
IDEs without scale benchmarks or secure endpoint integration.

SWAIG is already deployed across SignalWire’s telecom-grade infrastructure. It inherits
FreeSWITCH’s performance and reliability, and has been used in thousands of concurrent voice
sessions.

Teams can:

e Start serverless (APIl-only functions)
e Deploy hosted SWAIG servers (Heroku, Fly.io, AWS)



e Mix real-time calls, SMS, and backend logic
e Reuse functions across multiple agents
e Scale incrementally and predictably

This composability allows fast iteration without compromising structure or safety.

Built-in Tool Hosting and Discovery

A unique feature of SWAIG is its ability to dynamically fetch tools from external sources via
HTTP POST. Developers can:

Host SWAIG-compatible tools on their own server
Expose functions via authenticated POST endpoints
Register tool URLs in SWML agents declaratively
Enable auto-discovery with explicit permission control

This is conceptually similar to MCP’s vision of tool discovery, but significantly simpler. No
negotiation protocol, no capability graph. Just set the endpoint, define the schema, and let the
agent invoke it.

It is declarative, scalable, and secure-without overengineering.

How MCP Could Learn from SWAIG

MCP’s structure is thoughtful, but early implementations lack the constraints and integration
patterns required for production readiness. It could evolve faster by adopting elements from
SWAIG:

1. Data-first execution models
o Instead of resource abstractions, SWAIG uses data_map blocks to bind inputs to
live data.
2. Declarative action flows
o SWAIG returns typed, structured action blocks that eliminate ambiguity.
3. Lifecycle integration
o SWAIG functions execute within voice/messaging sessions and manage state
transitions.
4. Unified format
o SWAIG functions behave the same whether serverless or hosted-minimizing
mental overhead.



MCP’s principles are solid, but operational grounding is what transforms protocols into
platforms. SWAIG illustrates that real-world design requires execution, not just abstraction.

Operational Milestones

SWAIG has been running in production since early 2023, integrated directly into SignalWire’s
global telecom infrastructure. It has handled Thousands of concurrent real-time voice sessions.

This operational maturity is not speculative. It reflects learnings and refinements from live
deployments in regulated, customer-facing environments.

Conclusion

MCP is a promising attempt to define the future of LLM-driven tools. It is modular, extensible,
and aligned with privacy-first principles. But while it proposes how Al Gateways might work,
SWAIG proves how they already do work, today.

SWAIG is declarative, enforceable, composable, and live in production. It eliminates
unnecessary complexity, runs directly in the SignalWire platform, and powers real-time voice
and messaging Al agents.

Itis not a concept. It is a framework. It closes the loop between intent and action, between
specification and behavior, between architecture and execution.

For organizations looking to operationalize Al agents today, not in theory, SWAIG provides the
shortest path from design to deployment. It is the blueprint for operational Al agents. And it is
already live.

Examples and More Information

To explore SWAIG and SWML in practice, see the following live resources:

SignalWire Al Platform

Al Workshop Examples by @briankwest
SignalWire Digital Employees Reference
Official SWML Al Guides and Documentation



https://signalwire.ai
https://github.com/briankwest/aiworkshop
https://github.com/signalwire/digital_employees
https://developer.signalwire.com/swml/guides/ai

	SignalWire AI Gateway (SWAIG) and How it Compares to MCP 
	Introduction 
	The Core Philosophy 
	Design and Simplicity 
	Example: Serverless Function with Data Map 
	Example: Hosted Function with Webhook 

	Integration in the Real World 
	Real-World Example: Appointment Scheduler 

	Security and Operational Trust 
	Scalability and Deployment 
	Built-in Tool Hosting and Discovery 
	How MCP Could Learn from SWAIG 
	Operational Milestones 
	Conclusion 
	Examples and More Information 


