
Model Context Protocol: Evolving to Work 
Together with Real-Time Media Plumbing 

Introduction 
At SignalWire, we've spent years designing robust, real-time communications infrastructures, 
notably FreeSWITCH and the SignalWire Cloud. Before the introduction of the Model Context 
Protocol (MCP), we developed the SignalWire Markup Language (SWML)-a structured, YAML- 
and JSON-based static markup language enabling dynamic interactions across voice calls, 
video conferences, messaging, and AI-driven conversational agents. Additionally, we created 
RELAY, a WebSocket-based RPC call control protocol specifically designed to manage live calls 
remotely, ensuring low latency, state synchronization, and efficient error recovery. 

For Conversational AI IVRs, SWML combined with our SignalWire AI Gateway (SWAIG) allows 
applications to intuitively interact with REST APIs and execute structured RPC-like calls. Our 
infrastructure explicitly supports robust, stateful real-time WebSocket connections, dynamic 
AI-driven interactions, clear error handling mechanisms, explicit session and state management, 
and well-defined message framing and flow control. 

Evaluating the MCP Specification 
When reviewing the MCP specification, we recognized and appreciated its ambition to 
standardize interactions between Large Language Models (LLMs) and external services. The 
schema demonstrates comprehensive thinking around defining prompts, resources, and 
interactions. However, our extensive experience with protocols like SIP, WebRTC, RTP, and 
high-volume real-time call control highlighted potential challenges in MCP's transport layer that 
could limit practical scalability and reliability in demanding production environments. 

Limitations of MCP’s Current Transport Approach 

MCP currently uses "streamable HTTP," implemented via long-lived HTTP POST requests with 
chunked JSON responses. This approach simplifies initial integration and is well-suited for 
prototypes or demonstrations. Nonetheless, we identified several critical scalability limitations: 

● Connection fragility: Persistent HTTP streams can become unstable, causing reliability 
issues at scale. 

● Fan-out difficulties: Managing multiple simultaneous streaming consumers becomes 
increasingly complex. 

● Lack of multiplexing: Limits the efficiency and scalability of concurrent interactions. 



● Insufficient error handling and recovery: Current methods lack comprehensive 
strategies for session resumption and connection recovery. 

● Framing ambiguity: Absence of standardized framing complicates parsing and can 
degrade reliability under heavy usage. 

Real-World Lessons from SIP, RTP, WebRTC, and High-Volume Call Control 

Deployments involving SIP, RTP, WebRTC, and our high-volume call control protocols 
demonstrate that large-scale, real-time systems significantly benefit from robust transport 
technologies. Lessons learned include: 

● Multiplexing: Essential for efficient handling of thousands of simultaneous streams. 
● Explicit session management: Robust session and connection resumption strategies 

are critical for maintaining high availability. 
● Built-in flow control: Prevents overload and ensures stable system performance. 
● Standardized message framing: Simplifies parsing, reduces errors, and ensures 

reliability at scale. 

These proven transport mechanisms inherently provide the necessary reliability and scalability 
required by demanding real-world scenarios. 

Recommendations for Transport Enhancements 
To address these identified limitations, we recommend future MCP iterations explicitly support or 
clearly define alternative transports, keeping practical considerations in mind: 

● WebSockets: While a logical option due to their real-time capabilities, scalability 
considerations should be taken into account. 

● Standard REST: A stateless REST-based approach could offer simplified client access 
and reduce server-side complexity, greatly enhancing scalability. 

● HTTP/2 or QUIC: Forward-thinking options providing efficient multiplexing, built-in flow 
control, and significantly reduced latency, essential for quick response times in 
LLM-based applications. 

● Explicit session management: Strategies for robust connection establishment, error 
recovery, and resumption. 

● Clear framing standards: Binary or line-delimited JSON framing to enhance parsing 
efficiency and reliability. 

Quick response time is paramount when providing tools to LLM-based applications. Adopting 
these enhancements would elevate MCP from its current prototype-friendly form to a fully 
production-ready protocol capable of supporting enterprise-level scalability, performance, and 
reliability. 

Future Compatibility with SignalWire’s Infrastructure 



The structured format of SWML and the extensibility of our SWAIG functions could naturally 
integrate as an MCP client if the transport and scalability concerns were adequately addressed. 
SignalWire’s voice AI kernel operates as a central hub, seamlessly connecting telecom features 
with AI capabilities, coordinating voice interactions, listening, and cognitive processing via an 
integrated LLM. Developers can define conversational behavior using prompts and callbacks 
that map to SWAIG functions, enabling dynamic modifications of bot behavior, context 
management, and feature expansions without implementing each functionality individually. 

Given this existing architecture, integrating MCP would be straightforward and highly beneficial. 
MCP could effectively extend SignalWire's robust conversational engine by providing additional 
remote services that could be effortlessly plugged into the platform. Such integration would 
amplify interoperability, further enhancing the adaptability and scalability of SignalWire’s 
AI-driven conversational experiences. 

SignalWire's existing infrastructure is well-equipped to support MCP’s JSON-RPC schema, 
offering broader interoperability while preserving our native protocols' robustness and 
performance. 

Conclusion 
MCP’s vision aligns closely with ours-enabling powerful, standardized interactions between 
AI-driven agents and external resources. By incorporating transport-layer enhancements 
informed by our extensive experience with SIP, RTP, WebRTC, and high-volume call control, 
MCP can mature into a reliable, scalable protocol suitable for demanding real-time applications 
at enterprise scale. We look forward to MCP’s evolution and strongly encourage proactive 
incorporation of these recommendations to ensure broad industry adoption and effective 
deployment. 

 


	Model Context Protocol: Evolving to Work Together with Real-Time Media Plumbing 
	Introduction 
	Evaluating the MCP Specification 
	Limitations of MCP’s Current Transport Approach 
	Real-World Lessons from SIP, RTP, WebRTC, and High-Volume Call Control 

	Recommendations for Transport Enhancements 
	Future Compatibility with SignalWire’s Infrastructure 
	Conclusion 


